期刊文献+

用初函数法研究平板的稳定性问题

A STUDY OF PLATE STABILITY PROBLEM BY METHOD OF INITIAL FUNCTIONS
下载PDF
导出
摘要 本文从三维数学弹性稳定理论的基本方程出发,以位移和横向应力为自变量,运用初函数法分析了面内双向均匀受压和均匀受剪的平板弹性稳定性问题,导出了矩形平板对称失稳和反对称失稳的控制方程。文中以四边简支双向均匀受压的矩形板为例,得到二种失稳模式,并证明在弹性范围内不可能产生对称失稳。计算结果表明,临界载荷低于经典理论给出的结果。 Based upon the three dimensional theory of mathematical elastic stability, the stability problem of a plate compressed and sheared in two perpendicular direction is studied by the method of initial functions. The governing differential equations of the symmetric buckling mode and asymmetric buckling mode have been formulated. An example of a simply supported rectangular plate with two-way compression is solved, and two buckling mode is obtained. The result shows that the symmetric buckling mode can not exist in the elastic region, and the asymmetric buckling load is lower than that derived from the classic theory.
作者 徐旭 何福保
机构地区 上海大学
出处 《工程力学》 EI CSCD 北大核心 1997年第3期61-69,共9页 Engineering Mechanics
关键词 初函数 弹性稳定性 平板 对称失稳 反对称失稳 the method of initial function, elastic stability
  • 相关文献

参考文献2

二级参考文献1

  • 1冯康,数值计算方法,1978年

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部