期刊文献+

影响超磁致伸缩执行器中逆效应性能的主要因素 被引量:9

MAIN FACTORS OF CONVERSE EFFECT PERFORMANCE IN GIANT MAGNETOSTRICTIVE ACTUATOR
下载PDF
导出
摘要 超磁致伸缩材料(GMM)是一种具有双向可逆换能效应(磁-机、机-磁)的新型功能材料,利用其逆效应在超磁致伸缩执行器(GMA)驱动过程中感知出传感信号,可实现自感知执行器。探讨超磁致伸缩逆效应的机理,设计一种试验方法,验证了超磁致伸缩执行器中的磁致伸缩逆效应。揭示预压应力、偏置磁场和激振力频率等因素对超磁致伸缩逆效应性能的影响规律,预压应力越大则逆效应性能越差,适当的偏置磁场可使逆效应性能显著增强,激振力频率越高,力感知灵敏度越高,但不成简单的正比关系。试验证明了GMA作力传感器有效性,提出一种分时结构的自感知GMA。 Giant magnetostrictive material (GMM) is a new functional material which has reversible dual-directional transduction effect (magnetic to mechanical and mechanical to magnetic). If the sensing signals based on inverse magnetostriction could be attained in the driving process of giant magnetostrictive actuators (GMA), the self-sensing actuator would be realized. The origin mechanism of magnetostrictive converse effect is discussed. An experimental method to test the converse effect in the GMA is built up. The influence of pre-stress, bias magnet and drive force's frequency to the converse effect in GMA is disclosed. The inverse effect changes weaken while increasing pre-stress, and appropriate bias magnet can enhance the inverse effect observably. The sensitivity of force sensing signal is improving with the increasing of vibration force' s frequency, but the relationship is not ordinary linear. Experiments validated that GMA could be used as force sensor, and a self-sensing GMA based on time-sharing theory is pointed out.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2007年第12期133-136,143,共5页 Journal of Mechanical Engineering
基金 中国博士后科学基金(20060390337) 国家自然科学基金(50105019)资助项目
关键词 超磁致伸缩 逆效应 自感知 Magnetostrictive Converse effect Self-sensing
  • 相关文献

参考文献10

  • 1CLAEYSSEN F, COLOMBANI D, TESSEREAU A, et al. Giant dynamic magnetostrain in rare earth-iron magnetostostrictive materials[J]. IEEE Transactions on Magnetics, 1991, 27(6): 5343-5345.
  • 2QUANDT E, LUDWIG A. Magnetostrictive actuation in microsystems[J]. Sensors and Actuators A: Physical, 2000 (81): 275-280.
  • 3WUN H K, BARTELS K A. Magnetostrictive sensors technology and applications[J]. Ultrasonics, 1998 (36): 171-178.
  • 4LIM S H, HAN S H, KIM H J. Prototype microactuators driven by magnetostrictive thin films[J]. IEEE Transactions on Magnetics, 1998, 34(4): 2042-2044.
  • 5BAUDENDISTEL T A, TURNER M L. A novel inverse-magnetostrictive force sensor[J]. IEEE Sensors, 2007, 7(2): 245-250.
  • 6BARTLETT P A, KATRANAS G S, MEYDAN T. A hybrid magnetic sensor system for measuring dynamic forces[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3288-3290.
  • 7CHAKRABORTY S, TOMLINSON G R. An initial experimental investigation into the change in magnetic induction of a Terfenol-D rod due to external stress[J]. Smart Materials and Structures, 2003, 12:763-768.
  • 8DAPINO M J, SMITH R C, FLATAU A B. Structural magnetic strain model for magnetostrictive transducers[J]. IEEE Transactions on Magnetics, 2000, 36(3): 545-556.
  • 9CLARK A E, TETER J P, MASTER M O D. Magnetostriction jumps in twined Tb0.3Dy0.7Fe1.9[J]. J. Appl. Phys., 1988, 63(8): 3910-3912.
  • 10唐志峰,项占琴,吕福在.稀土超磁致伸缩执行器优化设计及控制建模[J].中国机械工程,2005,16(9):753-757. 被引量:11

二级参考文献6

  • 1Engdahl G. Handbook of Giant Magnetostrictive Materials. Sa Diego: Academic Press. 2000.
  • 2Anjanappa M A, Bi Jie. Modelling, Design and Control of Embedded Terfenol-D Actuator. SPIE Smart Structures and Intelligent Systems, 1993,1917(3) :908-918.
  • 3Bryant M D, Wang Ning. Audio Range Dynamic Models and Controllability of Linear Motion Terfenol Actuators. Journal of Intelligent Material Systems and Structures,1994,(5):431-436.
  • 4Mayergoyz I D. Mathematical Models of Hysteresis. IEEE Transactions on Magnetic, 1986,9(5): 603-608.
  • 5Calkins F T,Smith R C,Flatau A B. Energy Based Hysteresis Model for Magnetostrictive TransducIEEE Transactions on Magnetics, 2000, 36(2) :429-439.
  • 6Benbouzid M E H. Artificial Neural Networks for Finite Element Modeling of Giant Magnetostrictive Devices. IEEE Transaction on Magnetics , 1998, 34(6) :3853-3856.

共引文献10

同被引文献74

  • 1樊长在,杨庆新,杨文荣,闫荣格,孙景峰,刘福贵.基于磁致伸缩逆效应的超磁致伸缩力传感器[J].仪表技术与传感器,2007(4):5-7. 被引量:7
  • 2DAPINO M J,SMITH R C, FLATAU A B. Structural magnetic strain model for magnetostrictive transducers [ J ]. IEEE Transactions on Magnetics, 2000,36 ( 3 ) :545 - 556.
  • 3JON P,Alison B F. Development and analysis of a self-sensing magnetostrictive actuator design[ J]. Proceedings SPIE, 1993, 1917:952 - 961.
  • 4Ralph C F,Michael J G. Passive damping and velocity sensing using magnetostrictive transduction [ J ]. Proceedings SPIE, 1994, (2190) :216 - 227.
  • 5JONES L D, Garcia E. Self-sensing magnetostrictive actuator for vibration suppression[ J]. Journal of Guidance, 1996,19 ( 3 ) : 713 -715.
  • 6贾振元,王晓煜,王福吉.超磁致伸缩执行器自适应离散滑模控制[J].系统仿真学报,2007,19(24):5768-5772. 被引量:5
  • 7Calkins F T, Flatau A B, Dapino M J. Overview of magnetostrictive sensor technology[ J]. Journal of Intelligent Material Systems and Structures, 2007, 18(10) : 1057 -1066.
  • 8Brian P Baillargeon, Senthil S Vel. Active vibration suppression of sandwich beam using piezoelectric shear actuators : experiments and numerical simulations[ J]. Journal of Intelligent Material Systems and Structures, 2005, 16(6) : 517 -530.
  • 9Liu Huifang, Wang Fuju, Jia Zhenyuan, et al. Modeling and simulation of a novel giant magnetostrictive force sensor [ J ]. International Journal of Industrial and Systems Engineering, 2012, 10 (4) : 411 -429.
  • 10Chakraborty S, Tomlinson G R. An initial experimental investigation into the change in magnetic induction of a Terfenol-D rod due to external stress [ J]. Smart Materials and Structures, 2003, 12 (5): 763 -768.

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部