期刊文献+

三维有限体平片裂纹的超奇异积分方程与边界元法 被引量:5

HYPERSINGULAR INTEGRAL EQUATIONS AND BOUNDARY ELEMENT METHOD FOR PLANAR CRACK PROBLEMS IN THREE DIMENSIONAL FINITE BODIES
下载PDF
导出
摘要 利用Somigliana公式及有限部积分的概念,导出了含任意平片裂纹三维有限体问题的超奇异积分方程组,并联合使用有限部积分与边界元法,建立了数值求解方法.在裂纹前沿附近单元,采用与理论分析一致的平方根位移模型,以提高数值结果的精度.最后计算了若干典型例子的应力强度因子. Using the Somigliana representation and the concepts of finite part integrals, a set of hypersingular integral equations of a planar crack in a three dimensional finite body and subjected to arbitrary loads are derived,and a numerical method is proposed by combining the finite part integral method with the boundary element method. According to the analytic theory of hypersingular integral equations, the square root models of displacement discontinuities in the elements near the crack front are applied, and thus the computing precision is raised. Finally, the stress intensity factors of several typical planar crack problems are calculated.
出处 《力学学报》 EI CSCD 北大核心 1997年第4期481-485,共5页 Chinese Journal of Theoretical and Applied Mechanics
关键词 三维有限体 裂纹 超奇异积分方程 边界元 planar crack problem in 3 D finite body, hypersingular integral equation, numerical method, stress intensity factor
  • 相关文献

参考文献3

二级参考文献1

  • 1汤任基,上海交通大学学报,1990年,24卷,36页

共引文献21

同被引文献26

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部