期刊文献+

电力系统机组组合问题的动态双种群粒子群算法 被引量:6

Dynamic double-population particle swarm optimization algorithm for power system unit commitment
下载PDF
导出
摘要 针对标准粒子群优化算法易陷入局部最优点的缺点,提出了动态双种群粒子群优化算法(DDPSO)。该算法中两个子种群规模随进化过程不断变化,进化中分别采用不同的学习策略且相互交换信息。将该算法应用于机组组合问题中,采用实数矩阵编码方法对发电计划进行编码,将两层优化问题转化为单层优化问题,直接运用DDPSO算法求解。仿真结果表明,用该方法解决机组组合问题具有良好的精度和鲁棒性。 Dynamic Double-population Particle Swarm Optimization (DDPSO) algorithm was presented to solve the problem that the standard PSO algorithm easily fell into a locally optimized point, where the population was divided into two sub-populations varying with their own evolutionary learning strategies and exchanging between them. The algorithm had been applied to power system Unit Commitment (UC). The DDPSO particle consisted of a two-dimensional real number matrix representing the generation schedule. According to the proposed coding manner, the DDPSO algorithm could directly solve UC. Simulation results show that the proposed method performs better in term of precision and convergence property,
出处 《计算机应用》 CSCD 北大核心 2008年第1期104-107,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60274009) 教育部博士点基金资助项目(20020145007)
关键词 粒子群优化 动态双种群 学习策略 机组组合 particle swarm optimization dynamic double-population learning strategy unit commitment
  • 相关文献

参考文献7

  • 1GAING Z L. Discrete particle swarm optimization algorithm for unit commitment[ C]// Proceedings of IEEE Power Engineering Society General Meeting. Toronto: IEEE Press, 2003,418 - 424.
  • 2SUN L Y, ZHANG Y, JIANG C W. A matrix real-coded genetic algorithm to the unit commitment problem [ J]. Electric Power Systems Research, 2006, 76(9) : 716 -728.
  • 3KENNEDY J, EBERHART R. Particle swarm optimization[ C]// Proceedings of IEEE International Conference on Neural Networks. Perth: IEEE Press, 1995, 1942-1948.
  • 4VASCONCELOS J A, RAMIREZ J A, TAKAHASHI R H C. Improvements in genetic algorithms [J]. IEEE Transactions on Magnetics, 2001, 37(5): 3414-3417.
  • 5OUYANG Z, SHAHIDEHPOUR S M. An intelligent dynamic programming for unit commitment application [ J]. IEEE Transactions on Power Systems, 1991, 6(3) : 1203 - 1209.
  • 6ONGSAKUL W, PETCHARAKS N. Unit commitment by enhanced adaptive Lagrangian relaxation [J]. IEEE Transactions Power Systems, 2004, 19(1): 620-628.
  • 7SWARUP K S, YAMASHIRO S. Unit commitment solution methodology using genetic algorithm [J]. IEEE Transactions on Power Systems, 2002, 17( 1): 87-91.

同被引文献78

引证文献6

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部