期刊文献+

基于集成主成分分析的人脸识别 被引量:5

Face recognition based on ensemble PCA
下载PDF
导出
摘要 设计了一种基于主成分分析的分类器集成方法。应用随机子空间法获得多个初始分类器,由它们的分类性能给出分类器的保留分值,从而确定它们的保留优先级别,最后由保留优先级别选择一组分类器组成集成。理论分析和在人脸数据库ORL上的实验结果表明,这种基于集成PCA的分类方法能够更好地对模式进行分类。 A classifiers ensemble approach based on Principal Component Analysis (PCA) was proposed. Lots of original classifiers were got from Random Subspace Method ( RSM). According to their classification performance, their preservation scores were given, so the preferential ranks for classifiers preservation were ordered, by which a set of classifiers was selected from original classifiers. Theoretic analysis and experimental results in face database ORL show that this pattern classification method based on ensemble PCA is efficient for pattern recognition.
出处 《计算机应用》 CSCD 北大核心 2008年第1期120-121,124,共3页 journal of Computer Applications
基金 江苏省高校自然科学基础研究项目(07KJB520133 05KJB520152)
关键词 维数约简 主成分分析 分类器集成 人脸识别 dimension reduction Principal Component Analysis (PCA) classifiers ensemble face recognition
  • 相关文献

参考文献5

  • 1MAXIM A G. On internal representations in face recognition systems [J]. Pattern Recognition, 2000, 33(8) : 1161 - 1177.
  • 2DIETI'ERICH T G. Ensemble methods in machine learning [ C]// Proceeding of First International Workshop on Multiple Classifier Systems. New York: Springer-Verlag, 2000,1- 15.
  • 3HOT K. The random subspace method for constructing decision forests [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1998,20(8) : 832 -844.
  • 4SHARKEY A J C, SHARKEY N E, GERECKE U, et al. The “test and select” approach to ensemble combination [ C]//Lecture Notes in Computer Science 1857. New York: Springer-Verlag, 2000,30 - 44.
  • 5周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:247

二级参考文献2

共引文献246

同被引文献52

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部