期刊文献+

调整EM算法结合加权小波在COSM中的应用 被引量:2

Application of regularized EM algorithm with weighted wavelet in COSM
下载PDF
导出
摘要 用基于深度变化成像模型的调整EM算法进行三维显微图像复原,不能更好地复原图像细节,而且耗时长。为提高图像的复原质量,缩短时间,提出把调整EM算法与加权小波相结合的算法。该算法先对加权小波系数进行调整,再用调整EM算法进行迭代复原。实验表明复原效果得到改善,并减少了迭代次数,效率明显提高。 In the image restoration of Computational Optical Sectioning Microscopy (COSM), using regularized Expectation Maximization (EM) algorithm based on the depth-variant imaging model can not restore the details of image, and consume more time, In order to improve the restored results and reduce the restoration time, the combination of the regularized EM algorithm and weighted wavelet algorithm was proposed. Firstly, revise the wavelet coefficients of the images. Then, use the regularized EM algorithm to do restoration. Experiments show that the restoration result is improved and the iteration time is reduced. The efficiency is increased obviously.
出处 《计算机应用》 CSCD 北大核心 2008年第1期205-207,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60372079)
关键词 图像复原 小波变换 调整EM算法 计算光学切片显微成像 image restoration wavelet transform regularized EM algorithm Computational Optical Sectioning Microscopy (COSM)
  • 相关文献

参考文献8

  • 1KENNETH R C. Digital image processing[ M]. New Jersey: Prentice-Hall International Inc, 1998.
  • 2赵佳,何小海,陶青川,刘莹.基于深度变化成像模型的调整EM算法[J].光学技术,2006,32(3):396-399. 被引量:3
  • 3滕奇志,陶青川,赵佳,何小海.基于深度变化成像模型的图像估计[J].计算机工程与应用,2005,41(4):32-34. 被引量:6
  • 4PREZA C, CONCHELLO J A. Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy[J]. Optical Society of America, 2004, 21 (9) : 1593 - 1601.
  • 5吕成淮,何小海,陶青川,张敏.图像复原中高斯点扩展函数参数估计算法研究[J].计算机工程与应用,2007,43(10):31-34. 被引量:11
  • 6CONCHELLO J A, MCNALLY J G. Fast regularization technique for expectation maximization algorithm for optical sectioning microscopy[ C]//Proceedings of the IS&T/SPIE Symposium on Electronic Imaging: science and technology. San Jose: [ s. n. ], 1996.
  • 7WANG G F, ZHANG J, PAN G W. Solution of inverse problems in image processing wavelet expansion [ J]. IEEE Transactions on Image Processing, 1995, 4(5) : 579 - 593.
  • 8BANHAM M R, KATSAGGELOS A K. Spatially adaptive wavelet- based multiscale Image restoration [ J]. IEEE Transactions on Image Processing, 1996, 5(4) : 619 -634.

二级参考文献30

  • 1滕奇志,陶青川,赵佳,何小海.基于深度变化成像模型的图像估计[J].计算机工程与应用,2005,41(4):32-34. 被引量:6
  • 2D L Snyder,M I Miller.Random Point Processes in Time and Space [M].New York:Spfinger-Verlag, 1991.
  • 3Kenneth R Castleman.Digital image processing[M].Prentice-Hall International, 1996.
  • 4C Preza,J A Conchello.Image estimation accounting for point-spread function depth variation in three-dimensional fluorescence microscopy [C].In:3D and Multidimensional Microscopy :Image Acquisition and Processing X,Proc SPIE ,2003 ;4964:27.
  • 5C Preza,J A Conchello.Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy. Optical Society of America, 2003.
  • 6A D Dempster,N M Laird,D B Rubin.Maximum Likelihood From Incomplete Data via the EM Algorithm[J].J Royal Statistical Society, B, 1977 ; 39:1~37.
  • 7T J Holmes.Expectation-maximization restoration of band limited, truncated point-process intensities with application in microscopy[J]. J Opt Soc Am,1989;A6(7):1006-1014.
  • 8A K Katsaggelos,K T Lay.Image identification and image restoration based on the expectation-maximization algorithm[J].Opt Eng,1990;29 (5) :436~445.
  • 9T J Holmes.Maximum-likelihood image restoration adapted for non- coherent optical imaging[J].Journal of the Optical Society of America A, 1988;5(5) ,666-673.
  • 10R L Langendijk,A M Tekalp,J Biemond.Maximum likelihood image and blur identification:A unifying approach[J].Opt Eng, 1990;29(5): 422-435.

共引文献14

同被引文献11

  • 1滕奇志,陶青川,赵佳,何小海.基于深度变化成像模型的图像估计[J].计算机工程与应用,2005,41(4):32-34. 被引量:6
  • 2陈华,金伟其,张楠,石俊生,王霞.基于神经网络的三维宽场显微图像复原研究[J].光子学报,2006,35(3):473-476. 被引量:12
  • 3赵佳,何小海,陶青川,刘莹.基于深度变化成像模型的调整EM算法[J].光学技术,2006,32(3):396-399. 被引量:3
  • 4吕成淮,何小海,陶青川,张敏.图像复原中高斯点扩展函数参数估计算法研究[J].计算机工程与应用,2007,43(10):31-34. 被引量:11
  • 5李蕊,陶青川,何小海,罗代升,吕成淮.高斯型点扩展函数估计的最近邻算法[J].光电工程,2007,34(6):97-101. 被引量:8
  • 6CONCHELLO J A, MCNALLY J G. Fast regularization technique for expectation maximization algorithm for computational optical-sectioning microscopy[ C]//Proceedings of the IS & T/SPIE Symposium on Electronic Imaging science and technology. San Jose: [ s.n. ], 1996.
  • 7CHANG C Y, FU S Y. Image classification using a module rbf neural network [ C] // Proceedings of the 1 st International Conference on Innovative Computing, Information and Control Los Vaqueros Circle: IEEE Computer Society, 2006, 2:270 - 273.
  • 8Kenneth R C.Digital image processing[M].New Jersey,US:Prentice-Hall International Inc,1998.
  • 9Preza C,Conchello J A.Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy[J].Optical Society of America,2004,21 (9):1593-1601.
  • 10Conchello J A,McNally J G.Fast regularization technique for expectation maximization algorithm for optical sectioning microscopy[C] //Proc IS&T/SPIE,Syrup,Electronic Imaging Sci Technol,San Jose:1996.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部