摘要
本文首先给出区域D的Poincaré度量λ(z)的几个有关性质,然后推广Bers逼近定理,得到主要结果如下:设D是连通数为有穷的有界区域,记Aq(D)为D内满足||p||=∫∫_D[λ(z) ̄(2-9)|ψ(z)||dz∧dz<∞的解析函数ψ之全体构成的Banach空间(其中整数q≥2),Rq(D,T)(TC(c-D))表示Aq(D)中极点在T的有理函数子空间,当T满足Bers逼近定理条件时,Rq(D,T)在Aq(D)中稠密。
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1997年第4期545-550,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金