期刊文献+

石油含水率测量动态补偿模型研究

Research on Measuring Moisture in Petroleum Based on Dynamic Compensation Method
下载PDF
导出
摘要 针对传统微波透射法测量石油含水率存在的测量误差大等问题,提出了一种基于神经网络的动态补偿方法,确定衰减和相移两个参量作为动态补偿模型的输入;针对传统BP算法具有收敛速度慢、容易陷入局部极小值等缺点,采用微粒群训练算法对神经网络动态补偿模型进行训练,可使微波透射石油含水率测量结果的补偿过程具有寻优全局性和精确性。实验结果表明,利用该技术对石油含水率测量结果进行校正是一种有效的方法,具有一定的应用价值。 To against the problem of big error in measuring moisture in petroleum by traditional microwave transmission method, the dynamic compensation technique based on neural netwnrk is proposed. Two of the parameters, i.e. microwave attenuation and phase shift are taken as the inputs of the dynamic compensation model. Considering the shortcomings of conventional BP algorithm, e.g. converging slowly and easily trapping a local minimum value, a learning algorithm using particle swarm optimization (PSO) is adopted to train the neural network dynamic compensation model. This will enable the compensation process optimal and accurate overall. Experiments show that the use of the technology in calibrating the measurement result of moisture in petroleum is effective and has certain applicable value.
出处 《自动化仪表》 CAS 2007年第12期39-41,44,共4页 Process Automation Instrumentation
关键词 石油 含水率 神经网络 微粒群优化算法 动态补偿 测量精度 Petroleum Moisture Neural network Particle swarm optimization algorithm Dynamic compensation Measurement accuracy
  • 相关文献

参考文献6

二级参考文献48

  • 1孙欣,王金春,何声亮.过程软测量[J].自动化仪表,1995,16(8):1-5. 被引量:17
  • 2刘兴斌,强锡富,庄海军.沾污对取样含水率计的影响及传感器的设计原则[J].测井技术,1995,19(1):54-57. 被引量:1
  • 3[美]D.郑均.电磁场和电磁波[M].上海:上海交通大学出版社,1984..
  • 4[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 5[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 6[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 7[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 8[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 9[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 10[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.

共引文献469

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部