摘要
仿照Galerkin逼近方法:Xn是X的n维线性子空间,Pn:X→Xn为投影算子(I+KnFn)Xn=P*ny其中P*n为Pn的共轭算子,Kn=P*nKPn,Fn=PnFP*n.建立了一种新的不同的Galerkin逼近方程,并证明了一类非线性算子方程在此逼近意义下是可解的。
Following Galerkin approximating method, X n is X′s n dimensional linear sub-space, and P n:X→X n is the projection operator (I+K nF n)X n=P * ny where P * n is the conjugate operator to P n, consequently K n=P * nKP n, F n=P nFP * n, hence, a new kind of different Galerkin approximating equation is established. Thereafter, the paper proves that a sort of nonlinear operator equations is solvable under the approximating implication.
出处
《辽宁工学院学报》
1997年第2期79-81,共3页
Journal of Liaoning Institute of Technology(Natural Science Edition)