期刊文献+

基于粒子群法的母管制锅炉负荷优化分配算法 被引量:6

Optimal Algorithm of Load Assignment of Pipe-main Scheme Boilers Based on PSO
下载PDF
导出
摘要 母管制运行锅炉的特性差别很大,如何实现锅炉间负荷的优化分配从而提高节煤率是母管制电厂运行管理中经常遇到的难题,本文提出了一种不同于常规等微增率法的负荷分配新算法——粒子群法,实例计算表明该方法可以取得比等微增率法更好的节煤效果。 Because of the big difference in operating characteristics among pipe - main scheme boilers, it is a problem frequently encountered in the operation and management of pipe - main scheme plants that how to optimize the load assignment among boilers for a higher coal saving ratio. This paper presents a new optimal algorithm for load assignment-PSO which is different from the equal- rate criterion commonly used. The calculation resuhs of an actual example demonstrate that the PSO algorithm is better than equal - rate criterion in saving coal.
出处 《节能技术》 CAS 2007年第6期501-503,共3页 Energy Conservation Technology
基金 黑龙江省科技攻关项目(GC05A306)
关键词 母管制锅炉 等微增率法 粒子群优化 节煤 pipe - main scheme boilers equal- rate criterion PSO optimization saving coal
  • 相关文献

参考文献6

  • 1高岩,梁太龙.并列运行工业锅炉的负荷优化分配[J].北京理工大学学报,2002,22(3):318-320. 被引量:9
  • 2康小海,汪秉文,李国宽.母管制运行机组负荷经济分配方案[J].水电能源科学,1999,17(3):68-69. 被引量:4
  • 3Kennedy J, Eberhart R. Partical Swarmoptimization [ C ]. Proceeding of IEEE International Conference on Neural Networks, Perth, Australia, 1995.
  • 4顾永东,金义雄.粒子群算法及其在电网规划中的应用[J].电气应用,2007,26(2):37-42. 被引量:7
  • 5Sensarma P S, Rahmani M, CarvalhoA. A comprehensive method for optimal expansion planning using particle swarm optimization[C]. Power Engineering Society Winter Meeting, 27 - 31 Jan 2002, IEEE 2002,2:1317 - 1322.
  • 6Russell C Eberhart, Yuhui Shi. Particle swarm optimization : developments, applications and recourses [ C ]. Evolutionary Computation,2001. Proceedings of the 2001 Congress, 2001,1 (5) : 81 - 86.

二级参考文献18

  • 1郭丙然.最优化技术在电厂热力工程中的应用[M].北京:水利电力出版社,1986..
  • 2[1]Kennedy J,Eberhart R.Particle swarm optimization[J].Proceedings of IEEE International Conference on Neural Networks,1995 (4):1942-1948.
  • 3[2]Glover F.Tabu search:part I[J].ORSA J on Computing,1989,1 (3):190-206.
  • 4[3]D E Goldberg.Genetic algorithm in search,optimization and machine learning[ M].Addison-Wesley Publishing Company Inc,1985.
  • 5[4]S Kirkpatrick,C D Gelatt,M P Vecchi.Optimization by simulated annealing[J].Science,1983,220:671.
  • 6[5]Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[ J] IEEE Transactions on Evolutionary Computation,1997,1 (1):53-66.
  • 7[6]Gallego R A,Monticelli A,Romero R.Transmission system expansion planning by an extended genetic algorithm[J].IEE Proceedings on Generation,Transmission and Distribution,1998,145 (5):329-335.
  • 8[7]Da Silva E L,Gil H A,Areiza J M.Transmission network expansion planning under an improved genetic algorithm[J].IEEE Transactions on Power Systems,2000,15 (8):1168-1174.
  • 9[8]Sensarma P S,Rahmani M,Carvalho A.A comprehensive method for optimal expansion planning using particle swarm optimization[C].Power Engineering Society Winter Meeting,27-31 Jan 2002,IEEE 2002,2:1317-1322.
  • 10[9]Boeringer D W,Werner D H.A comparison of particle swarm optimization and genetic algorithms for a phased array synthesis problem[ C].Antennas and Propagation Society International Symposium,22-27 June 2003,IEEE 2003 (1):181-184.

共引文献17

同被引文献75

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部