摘要
双天线GPS提供的载体姿态信息与惯性导航系统信息进行融合可提高组合导航系统的性能。由于在实际应用中,GPS接收机可能会受到某种干扰无法提供舰船航向信息,从而降低传统卡尔曼滤波器的性能。因而提出了一种新的基于模糊逻辑控制的自适应卡尔曼滤波器。改进后的卡尔曼滤波器使用两个模糊逻辑控制器来调整两个系统的组合模式,并且根据卡尔曼滤波器的内部状态、GPS工作状态和舰船运动状态来计算卡尔曼增益。通过使用INS和GPS的实测数据验证,这种基于模糊逻辑控制的自适应卡尔曼滤波器能有效的提高INS/GPS组合导航系统的性能。
The performance of duo-antenna GPS/INS integrated system can be improved by combining the GPS’s vehicle attitude information with the INS information. In practical application, a GPS receiver may be unable to provide the heading information for ships as it may subject to disturbing, therefore the performance of conventional Kalman filter may be degraded. The paper presents a modified adaptive Kalman filter which uses two FLCs(fuzzy logic control) to adjust the integrating modes of the two systems. The calculation of Kalman gain is based on the internal states of Kalman filter, GPS working status and the vehicle’s kinetic states. The new adaptive Kalman filter thus can select appropriate fusion mode, adjust the noise intensity in the filter and prevent it from divergence, thus improving the system’s performance. The actual measurement data from the INS and GPS have verified the effectiveness of the proposed FLC-based adaptive Kalman filter.
出处
《中国惯性技术学报》
EI
CSCD
2007年第4期412-417,共6页
Journal of Chinese Inertial Technology
基金
国家自然科学基金项目(No.40125013&No.40376011)
关键词
组合导航
信息融合
模糊逻辑
自适应卡尔曼滤波器
integrated navigation system
information fusion
fuzzy logic
adaptive Kalman filter