期刊文献+

粒子群优化BP算法在短期负荷预测中的应用

Application of the PSO-BP Algorithm in Electric Power System Short-term Load Forecast
下载PDF
导出
摘要 电力系统短期负荷预测是电力系统调度运营和用电服务部门的重要日常工作之一,其预测精度直接影响到电力系统运行的安全性、经济性和供电质量。为提高预测精度,本文引入一种新型的群智能方法--粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型。通过具体算例将此模型与单纯的BP模型进行比较,结果表明:该算法具有较高的预测精度,完全能满足实际工程的要求。 The short-term load forecasting (STLF) of electric power system is one of the important routines for power dispatch and utility departments. It is widely used in the dispatching and operation planning of power systems, and the accuracy of the load forecasting is helpful to the security, economy of power systems and quality of the power supply. For improving the accuracy of the load forecasting, in this paper, a PSO-BP hybrid algorithm is formed, which is the combination of PSO and BP algorithm. Then, a short-term load forecasting model involving various influencing factors is built. The short-term load forecasting of power system is performed using the mixed PSO-BP algorithm and improved BP algorithm. The simulation results indicate that this mixed PSO-BP algorithm is better than improved BP algorithm.
作者 傅忠云
出处 《山东电力高等专科学校学报》 2007年第4期63-66,共4页 Journal of Shandong Electric Power College
关键词 粒子群算法 BP模型 粒子群优化BP模型 短期负荷预测 PSO, BP algorithm, PSO-BP STLF
  • 相关文献

参考文献6

  • 1Eberhart R C;Shi Y.Particle swarm optimization:development,application and resources[C],2001.
  • 2Fukuyama Y.Fundamentals of particle swarm techniquesModern Heuristic Optimization Techniques with Applications to Power Systems,2002.
  • 3李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 4Angeline P J.Using Selection to Improve Particle Swarm Optimization,1999.
  • 5牛东晓;曹树华;赵磊.电力负荷预测技术及其应用.,1998.
  • 6刘晨晖.电力系统负荷预报理论与方法,1986.

二级参考文献8

  • 1Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 2Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.
  • 3Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001.
  • 4Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476.
  • 5Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434.
  • 6Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607.
  • 7Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 8李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:304

共引文献398

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部