期刊文献+

利用指数函数法求解变系数KdV方程 被引量:4

Solving Variable Coefficient KdV Equation with Exponential Function
下载PDF
导出
摘要 利用指数函数法求解变系数KdV方程,得到了多种孤波解,表明指数函数法对求解变系数非线性演化方程是非常有效的,值得进一步研究推广. We solved the variable coefficient KdV equation with exponential function, and obtained various solitary wave solutions, indicating that exponential function is a valid tool for solving the nonlinear evolution equation, and therefore shall be recommended.
机构地区 丽水学院物理系
出处 《绍兴文理学院学报》 2007年第10期49-53,共5页 Journal of Shaoxing University
关键词 指数函数法 孤波解 非线性演化方程 变系数KDV方程 exponential function solitary wave solution nonlinear evolution equation variable coefficient KdV equation
  • 相关文献

参考文献30

  • 1[1]Cardner C S,Kruskal J M,Miura R M.Method for solving the korteweg-de vries equation[J].Phys Rev Lett,1967,19:1095-1097.
  • 2[2]Wahlquist H D,Estabrook F B,Backlund transformations for solutions of the Korteweg-de Vries equation[J].Phys Rev Lett.1973,31:1386-1390.
  • 3[3]Hirota R.Exact solutions of the Kdv equation for multiple collisions of solitons[J].Phys Rev Lett.1971,27:1192-1197.
  • 4[4]LOU S Y,NI G J.The Relations among a Special Type of Solutions in Some (D+1)Dimensional Nonlinear Equations[J].J Math Phys,1989,30(7):1614-1620.
  • 5[5]Malfliet W.Solitary wave solutions of nonlinear wave equations[J].Am.J.Phys.1992,60:650-654.
  • 6[6]Wang M L,Zhou Y B,Li Z B.Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics[J].Phys Lett A,1996,216:67-75.
  • 7[7]Zhu J M,Ma Z Y.New exact solutions to the (2+1)-dimensional Broer-Kaup equation[J].Chaos,Soliton and Fractals,2007,34:476-481.
  • 8[8]Liu Q,Zhu J M.Exact Jacobian elliptic function solutions and hyperbolic function solutions for Sawada-Kotere equation with variable coefficient[J].Phys Lett A,2006,352:233-238.
  • 9[9]He J H.A coupling method of a homotopy technique and a perturbation technique for non-linear problems[J].International journal of Non-linear mechanics,2000,35(1):37-43.
  • 10[10]He J H.Application of homotopy perturbation method to nonlinear wave equations[J].CHAOS SOLITONS & FRACTALS,2005,26(3):695-700.

二级参考文献32

  • 1Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering ( Cambridge: Cambridge University Press).
  • 2Miura M R 1978 Baecklund Transformation( Berlin: Springer-Verlag).
  • 3Gu C H et al 1990 Soliton Theory and Its Application ( Hangzhou:Zhejiang Publishing House of Science and Technology).
  • 4Lou S Y 1998 Acta Phys. Sin. 47 1739(in Chinese).
  • 5Chen L L and Chen Z W 2002 Acta Phys. Sin. 51 955(in Chinese).
  • 6Liu S K, Fu Z T, Liu S D and Zhao Q 2001 Acta Phys. Sin. 50 2068(in Chinese)
  • 7Feng X 2000 Intern. Theor. Phys. 39 207.
  • 8Senthilvelan M 2001 Appl. Math. Comput. 123 381.
  • 9Fan E G and Zhang H Q 1998 Phys. Leu. A 246 403.
  • 10Wang M L 1995 Phys. Lett. A 199 169.

共引文献114

同被引文献42

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部