期刊文献+

逻辑系统中理论的下真度与相容度(Ⅰ) 被引量:7

Lower Truth Degree and Consistency Degrees of Theories in Five Standard Complete Logic Systems(Ⅰ)
下载PDF
导出
摘要 引入模糊逻辑系统中理论的下真度与不相容度的新概念,简化理论相容度的定义,给出理论的下真度、发散度、不相容度与相容度之间的关系。 First, the new concepts of lower truth degree and inconsistency degree of theories in logic systems is introduced, the definition of consistency degree of theories is simplified. And then, the relationships between lower truth degree, divergence degree, inconsistency degree and consistency degree are given.
作者 张兴芳
出处 《模糊系统与数学》 CSCD 北大核心 2007年第6期24-30,共7页 Fuzzy Systems and Mathematics
基金 山东省自然科学基金资助项目(Y2003A01)
关键词 理论 真度 下真度 相客度 Theories Truth Degree Lower Truth Degree Consistency Degree
  • 相关文献

参考文献11

  • 1Gottwald S,Nova'k V. On the consistency of fuzzy theories[A]. Proc, 7th IFSA Word Congr. Academia[C]. Prague, 1997 : 168- 171.
  • 2Wang G J,Zhang W X. Consistency degrees of finite theories in Lukasiewicz propositional fuzzy logic[J]. Fuzzy Sets and Systems, 2005, (149) : 275-294.
  • 3Zhou X N,Wang G J. Consistency degrees of theories in some systems of propositional fuzzy logic[J]. Fuzzy Sets and Systems,2005, (152) : 321-331.
  • 4Zhou H J,Wang G J. A new theory consistency index based on deduction theorems in several logic systems[J]. Fuzzy Sets and Systems, 2005, (157) : 427- 443.
  • 5张兴芳,孟广武.一阶模糊谓词逻辑公式的有限解释真度和可数解释真度的理论及其应用[J].计算机科学,2005,32(10):1-5. 被引量:22
  • 6Zhou H J,Wang G J. Generalized consistency degrees of theories w. r.t. formulas in several standard complete logic systems[J]. Fuzzy Sets and Systems, 2006, (157) :2058-2073.
  • 7Hajek P. Metamathematics of fuzzy logic[J]. London:Kluwer Academic Publishers, 1998:89- 120.
  • 8王国俊,任燕.Lukasiewicz命题集的发散性与相容性[J].工程数学学报,2003,20(3):13-18. 被引量:14
  • 9Aguzzoli S. The complexity of Mcnaughton function of one variable[J]. Aolvances in Applied Mathematics, 1998,21:58-77.
  • 10任芳.L^*系统中由单个原子生成的公式的真值函数的特征[J].工程数学学报,2005,22(3):563-566. 被引量:12

二级参考文献23

  • 1何颖俞,王国俊.L^*-Lindenbaum代数的结构与L^*公理系统的简化形式[J].工程数学学报,1998,15(1):1-8. 被引量:15
  • 2Chang C L, Lee R C - T.Symbolic Legic and Mechanical Theorem Proving [M]. New York: Academic Press,1973.
  • 3Ying M S. A logic for approximate reasoning [J]. Symbolic Logic, 1994; 59:830 - 837.
  • 4Wang L X. A Course in Fuzzy Systems and Control [M]. Upper Saddle River, NJ: Prentice Hall. 1997.
  • 5Hajek P. Metamathematics of Fuzzy Logic [M]. Dordrecht: Kluwer Academic Publishers, 1998.
  • 6Gerla B. A note on functions associated with Godel formulas[J]. Soft Computing 2000;4:206-209
  • 7Stefano Aguzzoli. The Complexity of McNaughton functions of one variable[J]. Advances In Applied Mathematics 1998;21:58-77
  • 8Rosser J B, Tunquette A R. Many-Valued Logics, Amsterdam:North-Holland. 1952
  • 9Pavelka J. On fuzzy logic Ⅰ, Ⅱ,. Ⅲ. Zeitschr f Math logik u Grundlagen d Math. 1979,25: 45~52,119~ 134,447~464
  • 10De Glas M. Knowlge representaion in a fuzzy setting: [Tech Rep 89/48]. Universite Paris M, laforia, 19

共引文献65

同被引文献74

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部