期刊文献+

基于Hebbina监督学习算法的神经网络变距控制 被引量:1

Neural network variable-pitch control based on Hebbina supervised learning algorithm
下载PDF
导出
摘要 变距控制是变速恒频风力发电机组的核心技术之一,由于变距系统具有纯滞后非线性的特性,采用常规的PID算法已无法满足控制目标的要求.由1 MW变速恒频风力发电机组实际运行情况可知,其控制器PID参数需要不断在线整定,为此设计了基于Hebbina监督学习机理的神经网络变距控制算法.根据机组运行的实际数据进行离线学习,确定Hebbina监督学习算法的学习速率iη,然后进行在线整定,以保证风力发电机组处于最佳运行状态.给出了1 MW风力发电机组采用常规PID算法和神经网络变距控制算法的仿真对比结果,从中可以看出后者的动态特性和稳态特性明显优于前者,对于实际应用将起到指导作用. Variable-pitch control is one of key technologies in variable-speed and constant-frequency(VSCF) wind turbine. Because of hysteretic nonlinear characteristics, variable-pitch system adopting traditional PIE) algorithm can't meet the requirements of control object. From the practical operation situation of 1 MW VSCF wind turbine, it can be seen that PID controller parameters need to be adjusted online all the time, the neural network variable-speed control based on Hebbina supervised learning algorithm was proposed. Learning offline on the basis of the practical data of wind turbine operation gives the learning rate ηi of Hebbina supervised learning algorithm, and then adjusting online is performed in oMer to make the wind turbine stay in the best running situation. The simulated results of 1 MW wind turbine generator system adopting traditional PID were compared with those adopting Hebbina supervised learning algorithm. It can be seen that the dynamic and steady characteristics of the latter are obviously superior to those of the former. The present conclusions will play important roles in real operations.
出处 《沈阳工业大学学报》 EI CAS 2007年第6期633-636,645,共5页 Journal of Shenyang University of Technology
基金 国家863计划资助项目(2006AA05Z429)
关键词 变距控制 神经网络 在线参数整定 PID控制 Hebbina监督学习算法 variable-pitch control neural network parameter adjusting online PID control Hebbina supervised learning algorithm
  • 相关文献

参考文献8

  • 1Kendall L, Balas M J, Lee Y J, et al. Application of proportional integral and disturbance accommodating control to variable speed variable pitch horizontal axis wind turbines [J ]. Wind Engineering, 1997,21(1) : 21 - 38.
  • 2Muljadi E, Migliore P. Variable speed operation of generators with rotor-speed, feedback in wind power applications [A]. Fifteenth ASME Wind Energy Symposium [ C]. Houston, Texas, 1996.
  • 3Wang X M, Deng Y, Xin Z X. Wind speed and generator speed sensorless direct torque control in double fed wind generator system [ A]. International Conference on Electrical Machines and System [C]. Nagasaki, Japan, 2006: 20 - 23.
  • 4邢作霞,郑琼林,姚兴佳,王发达.基于BP神经网络的PID变桨距风电机组控制[J].沈阳工业大学学报,2006,28(6):681-686. 被引量:22
  • 5包能胜,叶枝全.水平轴风力机状态空间模型参数辨识[J].太阳能学报,2003,24(3):371-375. 被引量:8
  • 6Slootweg G S, Haan W H, Polinder H, et al. General model for representing variable speed wind turbine in power system dynamics simulation [ J ]. IEEE Transactions on Power Systems,2003,18( 1 ) : 144 - 151.
  • 7Wang X M,Zeng D, Deng Y. Pitch regulator mechanism on the neural network control based on Hebbina supervised learning algorithm [A]. ICIEA 2007 2nd IEEE Conference on Industrial Electronics and Applications [ C]. Harbin, China, 2007 : 23 - 25.
  • 8单光坤,刘颖明,姚兴佳.大型风力发电机组变桨距机构分析与实验研究[J].沈阳工业大学学报,2007,29(2):209-212. 被引量:15

二级参考文献30

  • 1姚兴佳,刘光德,邢作霞,王超.大型变速风力发电机组总体设计中的几个问题探讨[J].沈阳工业大学学报,2006,28(2):196-201. 被引量:32
  • 2包能胜,陈庆新,姜桐.百千瓦级风机建模与仿真[J].太阳能学报,1997,18(1):51-58. 被引量:24
  • 3方崇智 萧德云.过程辨识[M].清华大学出版社,1989..
  • 4Gregor E vanBaars, Peter M M Bongers. Flexible wind turbine model validation[ J ]. Wind Engineering, 1992,16(4) :247--256.
  • 5Bongers P M M,Engelen T G van. Theoretical model and simulation of a wind turbine [ J ]. Wind Engineering,1988,11 (2) : 344--350.
  • 6Peter M M Bongers. Modeling and Identification of flexible wind turbines and a factorizational approach to robust control design [ D ]. Netherlands: Delft University of Technology, 1994.
  • 7Malatestas B, Papadopoulos M P. Modeling and identification of diesel-wind turbine system for wind penetration assessment[ J ]. IEEE Transactions on Power Systems,1993,8(3) : 1091--1097.
  • 8陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002..
  • 9Trkhk S Z,Duran A.Progress and recent trends in wind energy[J].Progress in Energy and Combustion Science,2004,30 (5):501-543.
  • 10Horiuchi N,Kawahito T.Torque and power limitations of variable speed wind turbines using pitch control and generator power control[A].Power Engineering Society Summer Meeting,VOLS 1-3,Conference Proceedings[C].Vancouver Canada:IEEE,2001.638-643.

共引文献42

同被引文献8

  • 1Franklin Gene F, Powell J D, Abbas Emami-Naeini(著),朱奇丹,张丽珂,原新,等(译).Feedback control of dynamic systems [ M ].北京:电子工业出版社,2004,332-424.
  • 2Stol Karl A, Fingersh Lee J. Wind turbine field testing of state-space control designs[R]. National Renewable Energy Laboratory, Golden Colorado, 80401-3393 303-275-3000. www. nrel. gov NREL/SR-500-35061, 2003.
  • 3曹树歉,张文德,萧龙翔.振动结构模态分析[M].天津大学出版社,2001,94-249.
  • 4Safonov G, Limebeer D J N, Chiang R C. Simplifying the theory via loop-shifting, matrix-pencil and descriptor concepts [J]. International Journal of Control, 1989, 50(6) : 2467-- 2488.
  • 5Bianchi Fernando D, De Battista Heman, Mantz Ricardo J. Wind turbine control systems principles, modeling and gain. scheduling design [ M ]. Springer Science Business Media, 2007, 10---150.
  • 6邓燕妮,桂卫华,胡荣强.H^∞控制算法及设计方法研究[J].武汉汽车工业大学学报,1997,19(6):43-47. 被引量:3
  • 7沈卫强,张学刚,李大中.H_∞鲁棒控制的分析方法及应用[J].电力情报,2002(1):56-58. 被引量:3
  • 8陈严,欧阳高飞,叶枝全.大型水平轴风力机传动系统的动力学研究[J].太阳能学报,2003,24(5):729-734. 被引量:42

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部