期刊文献+

矩阵方程X+A~* X^(-p)A=I当p>0时的准最大解的条件数

Condition number of the quasi-maximal solution to a matrix equation X+A~* X^(-p)A=I when p>0
下载PDF
导出
摘要 讨论了非线性矩阵方程X+A*X-pA=I在p>0时的准最大解的条件数,并且推导出了此条件数的显式表达式。 Consider the nonlinear matrix equation X+A^* X^-P A=I(p 〉 0), where A is n x n complex matrix and A^* denotes the conjugate transpose of a matrix A. The explicit expressions of the condition number of the quasi-maximal solution were obtained.
作者 李静 张玉海
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2007年第12期90-94,共5页 Journal of Shandong University(Natural Science)
基金 山东大学威海分校青年成长基金(z200608)
关键词 矩阵方程 条件数 准最大解 matrix equation condition number quasi-maximal solution
  • 相关文献

参考文献12

  • 1IVANOV I G, El-Sayed S M. Properties of positive definite solution of the equation X + A^*X^-2A = I [ J]. Linear Algebra Appl, 1998, 279: 303-316.
  • 2IVANOV I G, HASANOV V I, MINCHEV B V. On matrix equation X + A^* X^-2 A =I[J]. Linear Algebra Appl, 2001, 326:27-44.
  • 3ZHANG Y H. On Hermitian positive definite solutions of matrix equation X + A ^* X^-2A = I[J]. Linear Algebra Appl, 2003, 372:295- 304.
  • 4ENGWERDA J C, RAN A C M, RIJKEBOER A L. Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation X+ A^*X^-1A = Q[J] .Linear Algebra Appl, 1993, 186:255-275.
  • 5SUN J G, XU S F. Perturbation analysis of the maximal solution of the matrix equation X + A ^*X^- 1 A = PП[ J ]. Linear Algebra Appl, 2003, 362: 211-228.
  • 6陈小山,黎稳.关于矩阵方程X+A~*X^(-1)A=P的解及其扰动分析[J].计算数学,2005,27(3):303-310. 被引量:19
  • 7HASANOV V I, IVANOV I G. On two perturbation estimates of the extreme solutions to the equations X + A ^· X^-1 A = Q[J]. Linear Algebra Appl, 2006, 413 : 81-92.
  • 8王进芳,张玉海,朱本仁.矩阵方程X+A~*X^(-q)A=I(q>0)的Hermite正定解[J].计算数学,2004,26(1):61-72. 被引量:28
  • 9LIU X G, GAO H. On the positive definite solutions of the matrix equations X^s + A^TX^-tA = In [J]. Linear Algebra Appl, 2003, 368: 83-97.
  • 10HASANOV V I. Positive definite solutions of the matrix equations X+ A ^* X^-qA = Q[J]. Linear Algebra Appl, 2005, 404:166-182.

二级参考文献9

  • 1Anderson W.N., Morley T.D., Trapp G.E., Positive solutions to X = A-BX^-1B*, Linear Algebra Appl., 134(1990), 53-62.
  • 2Engwerda J.C., On the existence of a positive definite solution of the matrix equation X + A^TX^-1A = I, Linear Algebra Appl., 194 C1993), 91-108.
  • 3Engwerda J.C., Ran A.C.M., Rijkeboer A.L., Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation X + A^*X^-1A = I, Linear Algebra Appl., 186(1993), 255-275.
  • 4Zhan X., On the matrix equation X + A*X-1A = I, Linear Algebra Appl., 247 (1996),337-345.
  • 5Xu S.F., Perturbation analysis of the maximal solution of the matrix equation X +A^*X^-1A = P, Linear Algebra Appl., 336 (2001), 61-70.
  • 6Sun J.G., Xu S.F., Perturbation analysis of the maximal solution of the matrix equation X + A^*X^-1A = P.II, Linear Algebra Appl., 362 (2003), 211-228.
  • 7Liu X.G., Gao H., On the positive definite solutions of the matrix equations X^s±A^T X^-tA = In, Linear Algebra Appl., 368 (2003), 83-97.
  • 8Ran A.C.M., Reurings M.C.B., On the nonlinear matrix equation X + A^*F(X)A = Q:solutions and perturbation theory, Linear Algebra Appl., 346 (2002), 15-26.
  • 9Zhang Yuhai, On Hermitian positive definite solutions of matrix equation X + A^*X^-2A =I, Linear Algebra Appl., 326 (2001), 27-44.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部