期刊文献+

一种改进的模糊C均值聚类算法 被引量:26

Improved Fuzzy C-means Clustering Algorithm
下载PDF
导出
摘要 针对模糊C均值(FCM)聚类算法中,聚类效果往往受到聚类数目和初始聚类中心的影响这一问题,提出了基于平均信息熵确定聚类数目的方法,并采用密度函数法来获得初始聚类中心.实验结果表明,改进后的算法较好地解决了初值问题,与随机初始化方法相比,迭代次数少,收敛速度快. The performance of fuzzy c - means (FCM) clustering algorithm depends on the selection of the number of clusters and the initial cluster centers. To answer the two questions, this paper puts forward a new algorithm based on the average information entropy to find the number of clusters and adopts a density function algorithm to find the initial cluster centers. It is shown that the proposed algorithms resolve the inidal problems effectively. Compared with the stochastic initialization, the algorithms have fewer numbers of iterations and have faster speed to converge.
作者 宋清昆 郝敏
出处 《哈尔滨理工大学学报》 CAS 2007年第4期8-10,共3页 Journal of Harbin University of Science and Technology
关键词 模糊C均值聚类 信息熵 初始化 密度函数 fuzzy C - means clustering information entropy initialization density function
  • 相关文献

参考文献5

  • 1DUNN J C.A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well -separated Clusters[J].J.Cybernetics,1973,3(3):32-57.
  • 2BEZDEK J C.Pattern Recognition with Fuzzy Objective Function Algorithms[M].New York:Plenum Press,1981.
  • 3王元珍,王健,李晨阳.一种改进的模糊聚类算法[J].华中科技大学学报(自然科学版),2005,33(2):92-94. 被引量:18
  • 4CHIU S L.Fuzzy Model Identification Based on Cluster Estimation[J].Journal of Intelligent and Fuzzy Systems,1994,2(3):267-278.
  • 5PAL N R,BEZDEK J C.On Cluster Validity for the Fuzzy Cmeans Model[J].IEEE Transactions on Fuzzy Systems,1995,3(3):370-379.

二级参考文献2

  • 1乔治·克勤 郑全战 阿夏译.模糊集的理论、应用和新观点[M].北京:北京师范大学出版社,2000..
  • 2Bezdeck J C. Ehrlich R, Full W. FCM: fuzzy C-means algorithm[J]. Computers and Geosdence, 1984, 23:16-20.

共引文献17

同被引文献248

引证文献26

二级引证文献241

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部