期刊文献+

混沌优化BP网络在指纹分类中的应用

The Application of BP Neural-network Based on Chaotic Optimization in Fingerprint Classification
下载PDF
导出
摘要 利用混沌运动的遍历性、随机性和规律性等特点,将加速混沌优化方法与BP算法相结合,并用混沌激励函数代替部分S型激励函数的混合优化方法对BP网络进行了改进.仿真实验结果表明,改进后的BP网络能够对指纹进行准确分类,其精确度高于传统BP网络. Because of the important characteristics which are ergodicity, randomness and regularity, the accelerated chaotic algorithm is combined with the BP algorithm; a certain chaotic motivating function is used to replace the S style motivating function of the neural unit in the hidden-layer of the BP neural-network in this paper. The experimental results reveal that the styles of fingerprints could be classified more accurately by the BP neural - network based on chaotic optimization than the traditional one.
作者 王德武 于洋
出处 《哈尔滨理工大学学报》 CAS 2007年第4期57-61,共5页 Journal of Harbin University of Science and Technology
关键词 神经网络 混沌优化 指纹分类 neural-network chaotic optimization fingerprint classification
  • 相关文献

参考文献5

二级参考文献10

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部