摘要
利用Chebyshev-Fourier级数的部分和S(nα,β)(f;x),通过线性组合的方法构造了一个新的算子Hn,r(f;x),该算子对于区间[-1,1]上的任意连续函数f(x)都一致收敛,并且对f(x)∈C[J-1,1],0≤j≤r(其中r为任意的奇自然数)其逼近阶达到最佳.
In this paper we construct a new operator Hn,r(f;x) through the partial sums Sn^(α,β) (f;x) of Chebyshev - Fourier series. The operator converges uniformly to any fixed continuous functionf (x) on [ - 1,1 ] and has the best approximation order for f (x) ∈ C^j[-1,1],0≤j≤r(where r is an arbitrary odd natural number).
出处
《哈尔滨理工大学学报》
CAS
2007年第4期117-119,共3页
Journal of Harbin University of Science and Technology