期刊文献+

基于小波变换和MNF变换的遥感影像融合 被引量:7

Mergence of Remote Sensing Images Based on the Wavelet and MNF Transformations
下载PDF
导出
摘要 随着高分辨率遥感卫星的产生,传统的融合技术难以达到较好的融合效果,如主成分分析(Principal Com-ponents Analysis,PCA)变换融合对噪声比较敏感,受到融合区域的限制,而最小噪声分离(Minimum Noise Frac-tion,MNF)变换考虑了噪声和融合区域,是一种完备的成分分解方法,小波变换(Wavelet Transformation,WT)融合也存在一定程度的光谱失真。由此,本文在分析MNF变换和WT的基础上,以IKONOS新型高分辨率观测卫星提供的全色和多光谱数据为实验数据,提出了一种将两者相结合的遥感影像融合方法,通过与其它融合方法的定量和视觉比较,发现该方法能得到更好的融合效果。 As the high-resolution remote sensing satellite has emerged, it is very difficult for the traditional image mergence techniques to get good mergence results. For example, the mergence method with principal component a- nalysis (PCA) transformation is more sensitive to the noise and limited by the mergence region. But, the method with the minimum noise fraction (MNF) transformation is a self-contained component analysis method, with the effect of noise and mergence region eonsidered. The wavelet transformation (WT) mergence also, to some extent, brings color distortion. Therefore, on the basis of the MNF and WT analyses, a new remote sensing mergence method integrated wavelet with MNF transformation is studied where IKONOS multi-spectral image and panchro marie image are used in the paper. The results demonstrate that the new method could get better mergence effect by visually and quantitatively comparing with other mergence methods.
出处 《山东科技大学学报(自然科学版)》 CAS 2007年第5期56-60,共5页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家重点基础研究发展计划973项目(2006CB701303) 国家测绘局地理空间信息工程重点实验室基金项目(200729)
关键词 主成分分析(变换) 最小噪声分离(变换) 小波变换 影像融合 PCA (principal component analysis) MNF (minimum noise fraction) WT (wavelet transformation)image mergence
  • 相关文献

参考文献11

  • 1Aiazzi B,Alparone L, Baroni S,et al. Context-driven fusion of spatial and spectral resolution images based on oversampled multiresolution analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(10): 2300-2312.
  • 2Nunez J, Otazu X, Fors O, et al. Multiresolution-based image fusion with additive wavelet decomposition[J]. IEEE Transactions on Geosciences and Remote Sensing, 1999,37(3): 1204-1211.
  • 3Zhang Yun,Hong Gang. An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QUICKBIRD images[J]. Information Fusion, 2005,6 (3) : 225-234.
  • 4徐建达,王洪华.基于IHS变换和小波变换的遥感影像融合[J].测绘学院学报,2002,19(3):198-199. 被引量:27
  • 5Pohl C,van Genderen J L. Multisensor image fusion in remote sensing: concepts, methods and applications [J]. International Journal of Remote Sensing, 1998, 19 (5): 823-854.
  • 6杜鹏,赵慧洁.基于抗噪声ICA的高光谱数据特征提取方法[J].北京航空航天大学学报,2005,31(10):1101-1105. 被引量:7
  • 7Green A A,Berman M,Switzer P,et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988,26 (1) :65- 74.
  • 8Lee J B,Woodyatt A S, Berman M. Enhancement of high spectral resolution remote sensing data by a noise-adjusted principal components transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28 (3) : 295-304.
  • 9Mallat S. A theory for multiresolution signal decomposition : the wavelet representation[J]. IEEE Pattern Anal. and Machine Intell, 1989,11 (7) : 674-693.
  • 10Tu T M,Shyu H C,Sun Y S, et al. Determination of data dimensionality in hyperspectral imagery-PNAPCA [J]. Multidimensional Systems and Signal Processing, 1999,10(3) : 255-273.

二级参考文献19

  • 1李军,林宗坚.基于特征的遥感影像数据融合方法[J].中国图象图形学报(A辑),1997,2(2):103-107. 被引量:51
  • 2Neil H Timm. Applied Multivariate Analysis[M]. Springer, 2002.
  • 3Tadjudin Saldju, Landgrebe David. Classification of high dimensional data with limited training [EB/OL].http://dynamo.ecn.purdue.edu/~landgreb/Saldju_TR.pdf.
  • 4Hsu H P, Tseng H Y. Feature extraction for hyperspectral image[A]. Proc. 20th ACRS[C]. Hong Kong, 1999,1:405~410.
  • 5Hyvrinen A, J Karhunen, Oja E. Independent component analysis[M].Wiley, 2001.
  • 6Stefan A Robila, Pramod K Varshney. Target detection in hyperspectral images based on independent component analysis[A]. Proc. SPIE Int. Soc. Opt. Eng[C]. Orlando, USA, 2002.
  • 7Chiang Shao-Shan, Chang Chein-I, Ginsberg I W. Unsupervised hyperspectral image analysis using independent component analysis [A]. Geoscience and Remote Sensing Symposium, 2000 Proceedings. IGARSS 2000 IEEE 2000 International Vol.7[C]. 2000. 3136~3138.
  • 8Shah C A, Arora M K, Robila S A, et al. ICA mixture model based unsupervised classification of hyperspectral imagery [A]. 31st Applied Imagery Pattern Recognition Workshop, 2002. Proceedings[C]. 2002. 29~35.
  • 9Green A A, Berman M, Switzer P, et al . A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1988, 26(1):65~74.
  • 10Lee J B, Woodyatt A S, Berman M. Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1990, 28(3):295~304.

共引文献32

同被引文献60

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部