摘要
To enhance the maneuverability of the selected aircraft model, a standard genetic algorithm (GA) is used as an optimization method for the preliminary design of the leading-edge extension (LEX) layout. The aerodynamic loads and the maximum lift coefficient of the complete aircraft configuration (fuselage+wing+tail) are computed by using the modified three-dimensional low-order panel method in conjunction with the semi-empirical formulas of DATCOM. Results show that the lift coefficient increases approximately 20.5%- 15.3% for Mach number 0. 4-0.8 and 6.8% for Mach number 1.2, and its maximum value approximately 9.5% -15.0% for Machnumber 0.2-0.95when LEXis installed. A 6.6%-8.0 % gain at altitudes of 1-5 km on the turn rate maneuverability and the corner speed have been achieved in the subsonic regime.
为了提高所选定飞行器模型的机动性,采用了一种标准遗传算法设计前缘翼根延伸(LEX)。同时使用一种由三维低阶板方法结合DATCOM方法半经验公式的改进方法预测复杂外形飞行器(机身+机翼+尾翼)的空气动力载荷和最大升力系数。结果表明,在前缘翼根存在的情况下,升力系数在马赫数为0.4~0.8时提升了20.5%~15.3%,在马赫数为1.2时提升了6.8%,在马赫数为0.2~0.95之间升力系数最大值提升了9.5%~15%。在1~5km的高度亚音速飞行时,其回转率得到了6.6%~8.0%的提升。