摘要
针对水质系统的未确知性,将河流水流速以及弥散系数和衰减系数等参数视作未确知参量,并以灰参数的形式表示,运用灰色理论建立了二维河道的灰色水质模型.该模型具有一种特殊的结构,并给出了求解方法,在数值求解过程中,对二维河道的灰色水质模型求解过程中的有限差分法的截断误差进行了修正.利用该模型可以得到排污口下游各控制点污染物浓度的分布范围,从而为河流水质规划管理和水污染控制提供丰富、有用的水质信息.实例研究表明:运用灰色系统理论研究瞬时点源情形下的河流水质模拟预测问题,理论上是可行的,计算结果是合理的.
In view of the uncertainty of the river water quality system, the velocity and dispersion coefficient and attenuation in river are considered as uncertainty parameters and expressed as gray parameters. The two-dimensional gray model of river water quality built in the gray theory has the special structure. The truncation error of finite differential method in solving the model is reetified. According to the model, distribution values of pollutant concentration under sudden pollutant discharged can be obtained directly, which can provide abundant and useful water quality information for the planning and control of water pollution. It is shown that the calculated results obtained from the gray model are reliable and reasonable.
出处
《西安建筑科技大学学报(自然科学版)》
CSCD
北大核心
2007年第6期845-849,共5页
Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基金
国家自然科学基金项目(50479017)
关键词
河流水污染
灰参数
水质模拟
截断误差
灰色模型
river water pollution
gray parameters
water quality simulation
truncation error
gray model