摘要
针对雷达杂波的概率密度函数具有非对称和重拖尾等非高斯特征,对描述海杂波的K-分布,α-稳定分布和G-分布等三种重拖尾分布模型进行比较和分析。K-分布的重拖尾特性较轻微;α-稳定分布的重拖尾特性源自其方差无限大,重拖尾最严重;G-分布由二元Rayleigh独立积随机变量和广义χ分布随机变量进行级联而生成的三元独立积,重拖尾特性介于两者之间。最后使用Markov扩散过程模型产生G-分布杂波的相关随机变量,仿真得到的随机序列的概率密度分布与理论值吻合很好。
In order to model non-Gaussian signature of radar clutter, such as non- symmetric probability density function (pdf) with heavy tails, three kinds of pdf have been investigated, i. e. , K-distribution, α-stable distribution and G-distribution. The heavy tail of K-distribution is slight, and the tail of α-stable distribution is heaviest because its variance is infinite. G-distribution is the product of three independent random variables by using two independent Rayleigh variables multiplied by a X distributed random variable with n degrees of freedom, and its heavy tail is mediate. Markov diffusion processes are used to generate correlated random variables of G-distribution. The simulation results are similar to the theoretical value.
出处
《电波科学学报》
EI
CSCD
北大核心
2007年第6期1061-1067,共7页
Chinese Journal of Radio Science
基金
国家自然科学基金项目(No60572024)
教育部博士点基金项目(No200509230031)
关键词
雷达杂波
独立积
非高斯分布
K-分布
α-稳定分布
G-分布
radar clutter, product of independent random variables, non-Gaussian distribution, K-distribution, α-stable distribution, G-distribution