期刊文献+

旋转薄壁圆柱壳非线性波动振动分析

Forced nonlinear wave vibration of clamped-free rotating thin cylindrical shell
下载PDF
导出
摘要 基于Donnell’s简化壳理论,考虑阻尼和几何非线性,建立旋转薄壁圆柱壳在法向激振力作用下的波动振动方程,并利用Galerkin方法将波动振动方程转换到模态坐标上,其中考虑到一端自由一端固支的边界条件,节径数和轴向半波数分别取为6和1,得到2个相互耦合的非线性微分方程,用数值方法研究了各模态变量的时间响应和非线性幅频特性,并讨论了振动响应的稳定性和激振力对系统非线性的影响. Based on Donnell' s shallow-shell theory, the wave vibration of a clamped-free rotating thin cylindrical shell subjected to a harmonic load is studied, considering damping and geometric nonlinearity. During the process of investigation, we suppose the thin cylindrical shell is static, while the radial harmonic load moves around circumference at the same speed in the opposite direction. The wave vibration equation is reduced to a coupled system of two nonlinear differential equations with Galerkin method. The numerical solution of the system is obtained through forth-order Runge-Kutta method ,and then the time response and the frequency-amplitude curve of the selected modes are studied. Finally the stability of time response at the resonant frequency and the influence of the load amplitude to the nonlinearity are analyzed.
出处 《南昌工程学院学报》 CAS 2007年第6期32-36,共5页 Journal of Nanchang Institute of Technology
基金 教育部重大基础研究前期研究专项资助(2003CCA03900)
关键词 旋转薄壁圆柱壳 几何非线性 数值方法 波动共振 多值性 rotating thin cylindrical shell geometric nonlinearity numerical method wave resonance multi- valued solution
  • 相关文献

参考文献10

  • 1Ludwig A, Krieg R. An analytical quasi-exact method for calculating eigenvibrations of thin circular cylindrical shells[J]. Journal of Sound and Vibration, 1981,74(2) : 155-174.
  • 2Padovan J. Natural frequencies of rotating prestressed cylinders[J] .Journal of Sound and Vibration, 1973,31 (4) :469 - 482.
  • 3Pellicano F, Amabili M. Effect of the geometry on the non- linear vibration of circular cylindrical shells[ J ]. Non-linear Mechanics ,2002, 37:1181 - 1198.
  • 4Amabili M, Pellicano F.Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid,part Ⅲ :truncation effect without flow and experiments [ J ]. Journal of Sound and Vibration, 2000,237 (4) : 617 - 640.
  • 5Raouf R A, Nayfeh A H. One-to-one autoparametric resonances in infinitely long cylindrical shells[ J]. Computers & Structures, 1990,35 (2) :163- 173.
  • 6Fox C H J, Hardle D J W. Harmonic response of rotating cylindrical shell[J] .Journal of Sound and Vibration, 1985,101 (4):495 -510.
  • 7Srinivasan A V,Lauterbach G F.Traveling waves in rotating cylindrical shells[J] .Journal of Engineering for Industry, 1971, ( 11 ) : 1229 - 1232.
  • 8Ng T Y, Lam K Y. Vibration and critical speed of a rotating cylindrical shell subjected to axial loadlng[J] .Applied Acoustics, 1999,56 (4) : 273 - 282.
  • 9李健,郭星辉,李永刚.薄壁圆柱壳旋转波动振动分析[J].东北大学学报(自然科学版),2007,28(4):553-556. 被引量:8
  • 10Lain K Y, Loy C T. Analysis of rotating laminated cylindrical shells by different thin shell theories [ J]. Journal of Sound and Vibration, 1995,186( 1 ) :23 - 35.

二级参考文献9

  • 1Amabili M A.Comparison of shell theories for large-amplitude vibrations of circular cylindrical shells:Lagrangian approach[J].Journal of Sound and Vibration,2003,264(5):1091-1125.
  • 2Lee Y S,Kim Y W.Nonlinear free vibration analysis of rotating hybrid cylindrical shells[J].Computers & Structures,1999,70(2):161-168.
  • 3Chen Y,Zhao H B,Shen Z P.Vibrations of high speed rotating shells with calculations for cylindrical shells[J].Journal of Sound and Vibration,1993,160(1):137-160.
  • 4Pellicano F,Amabili M.Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads[J].International Journal of Solids and Structures,2003,40(13/14):3229-3251.
  • 5Honda Y,Matsuhisa H,Sato S.Modal response of a disk to a moving concentrated harmonic force[J].Journal of Sound and Vibration,1985,102(4):457-472.
  • 6Lam K Y,Loy C T.Analysis of rotating laminated cylindrical shells by different thin shell theories[J].Journal of Sound and Vibration,1995,186(1):23-35.
  • 7Fox C H J,Hardie D J W.Harmonic response of rotating cylindrical shell[J].Journal of Sound and Vibration,1985,101(4):495-510.
  • 8Yeh G C K.Forced vibration of a two-degree-of-freedom system with combined coulomb and viscous damping[J].Journal of Acoustical Society of America,1964,39(1):15-24.
  • 9郭星辉,许锷俊,李其汉,韩二中.盘形锥齿轮波动共振响应分析[J].东北工学院学报,1992,13(3):282-288. 被引量:9

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部