期刊文献+

隐含波动率微分算法的改进——波动率表面模型 被引量:3

An Improved Differential Approach to Computing Implied Volatility——Implied Volatility Surface Model
下载PDF
导出
摘要 基于以往研究隐含波动率的计算只考虑了交割价格对其的影响而忽略了到期日的作用,提出包含交割价格和到期日两变量的隐含波动率表面模型计算隐含波动率.数值计算结果表明,波动率表面模型提高了波动率的平均计算精度,同时给出了波动率"假笑"和波动率期限结构的特征.所提出的隐含波动率表面模型可作为投资者判断衍生产品投资价值的简单指标. Former researchers only concentrated on strike price affected implied volatility when computing implied volatility and neglected the effect of expiration. To calculate volatility, this paper proposed an implied volatility surface model including expiration and strike price of options. The numerical calculation shows the implied volatility surface model has improved the estimated precision of volatility. At the same time, the model can give the characters of volatility sneer and term structure of volatility. Investors can apply it in derivative securities market.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2007年第12期1985-1989,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金重点资助项目(70331001)
关键词 隐含波动率表面 波动率微笑 期限结构 implied volatility surface(IVS) volatility smile term structure
  • 相关文献

参考文献10

  • 1Black F, Scholes M. The pricing of options and corporate liabilities [J]. Journal of Political Economy, 1973, 81(3):637-655.
  • 2Bates D S. Post-'87 crash fears in the S&P 500 futures options market [J]. Journal of Econometrics, 2000(94): 181-238.
  • 3Stein J. Overreactions in the options market [J]. Journal of Finance, 1989(44) : 1011-1023.
  • 4Heynen R, Kemna A, Vorst T. Analysis of the term structure of implied volatilities [J]. Journal of Financial and Quantitative Analysis, 1994, 29(1) : 31-56.
  • 5Dumas B, Fleming J, Whaley R E. Implied volatility functions: Empirical tests [J]. Journal of Finance. 1998, 53(6): 2059-2107.
  • 6Manaster S, Koehler G. The calculation of implied variances from the Black-Scholes model: A note [J]. Journal of Finance, 1982, 37(1): 227-231.
  • 7杨柳,俞建宁,邓醉茶.由期权平均价格确定隐含波动率的最优化方法[J].工程数学学报,2006,23(3):481-492. 被引量:8
  • 8Brenner M, Subrahmanyam M G. A simple formula to compute the implied standard deviation [J]. Financial Analysts Journal, 1988, 5: 80-83.
  • 9Chance D M. A generalized simple formula to compute the implied volatility [J]. The Financial Review. 1996, 31(4): 859-867.
  • 10Kelly M A. Faster implied volatilities via the implicit function theorem [J]. The Financial Review, 2006, 41(4): 589-597.

二级参考文献11

  • 1张晓蓉.期权“隐含波动率微笑”成因分析[J].上海管理科学,2003,25(4):7-9. 被引量:6
  • 2Franks J R,Schwartz E J.The stochastic behaviour of market variance implied in the price of index options[J].Economics Journal,1991,101:75-1460
  • 3Heynen R.An empiricalinvestigation of observed smile patterns[J].Review Futures Markets,1993,13:53-317
  • 4Merton R.Option pricing when underlying stock returns are discontinuous[J].Journal of Finance Economics,1976,3:44-125
  • 5Renault E,Touzi N.Option hedging and implied volatilities in a stochastic volatility model[J].Mathematical Finance,1996,6:279-302
  • 6Lagnado R,Osher S.Reconciling differences[J].Risk,1997,10(4):79-83
  • 7Bouchouev I,Isakov V.The inverse problem of option pricing[J].Inverse Problems,1997,13:7-11
  • 8Bouchouev I,Isakov V.Uniqueness,stability and numerical methods for the inverse problem that arises in financial markets[J].Inverse Problems,1999,15:95-116
  • 9Bruno Dupire.Pricing with a smile[J].Risk,1994,7(1)
  • 10Lishang J,Youshan T.Identifying the volatility of underlying assets from option prices[J].Inverse Problems,2001,17:137-155

共引文献7

同被引文献32

  • 1祝建民.期权定价中的波动率估计[J].统计与决策,2005,21(09X):127-129. 被引量:5
  • 2曹扬慧.期权隐含波动率的估计方法[J].商场现代化,2005(10X):288-288. 被引量:2
  • 3李存行.认股权证的定价研究[J].统计与决策,2006,22(2):22-24. 被引量:21
  • 4杨柳,俞建宁,邓醉茶.由期权平均价格确定隐含波动率的最优化方法[J].工程数学学报,2006,23(3):481-492. 被引量:8
  • 5John C Hull.期权、期货和其它衍生产品[M].北京:华夏出版社,2004,7(3).
  • 6Lauterbach B, Schultz P. Pricing warrants: An empirical study of the Black-Scholes model and alternatives[J]. Journal of Finance,1990,45:1181-1209.
  • 7Yu Chuan Huang, Shing Chun Chen. Warrants pricing: Stochastic Volatility vs. Black-Schoes[J]. Pacific-Basin Finance Journal,2002, (10) :393-409.
  • 8Michael T Heath. Scientific Computing: An Introductory Survey[M]. Beijing: Tsinghua University Press,2004.
  • 9Black, F. , and M. Scholes, 1973, " The Pricing of Options and Corporate Liabilities", Journal of Political Economics, 81 : 637- 653.
  • 10Cont, R. , and J. Fonseca, 2002, "Dynamics of Implied Volatility Surfaces", Quantitative Finance, 2 : 45 - 60.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部