期刊文献+

基于改进的Mean Shift算法虚拟人脑图像分割 被引量:10

Digital Human Brain Image Segmentation Based on an Adapted Mean Shift Method
下载PDF
导出
摘要 为了克服Mean Shift算法各向同性的缺点,使用结构信息构造各向异性高斯核,使其具有各向异性,从而克服细长目标的影响;将颜色空间投影到新的坐标系下,使得相近颜色可以有较大的距离,以增大虚拟人脑图像中灰质与下层数据之间的区别.虚拟人脑图像分割结果说明,该算法可以得到较好的分割结果. In order to overcome the limitation of the Mean Shift method, this paper presents a new anisotropic Gauss kernel, based on structure information, and by the Gauss kernel newly proposed, the new model can reduce the effect of gracile topological structure. In addition, we project the color space to a new space, based on PCA model, to expand the distance of similar color and enlarge the difference between grey matters and grey matters belonging to next picture. The results of the segmentation of the digital brain image show that better results could be achieved by the adapted Mean Shift method.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第1期55-60,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60773172) 香港特区政府研究资助局资助项目(CUHK/4433/06M) 香港中文大学研究员项目基金(2050345) 南京信息工程大学研究基金
关键词 虚拟人 Mean SHIFT算法 各向异性 主成分分析 digital human mean shift method anisotropic PCA
  • 相关文献

参考文献12

  • 1Cheng Y Z. Mean Shift, mode seeking, and clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8) : 790-799
  • 2Zhi Qiangwei, Cai Zixing. Mean shift algorithm and its application in tracking of objects [C]//Proceedings of the 5th International Conference on Machine Learning and Cybernetics, Dalian, 2006:13-16
  • 3Jeong MunHo, You Bum-Jae, Oh Yonghwan, et al. Adaptive mean-shift tracking with novel color model[ C] //Proceedings of the IEEE International Conference on Mechatronics & Automation Niagara Falls, Ontaric, 2005; 1329-1333
  • 4Yang Changjiang, Duraiswami Ramani, Davis Larry. Efficient mean-shift tracking via a new similarity measure [C] //Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition ( CVPR' 05 ), San Diego, 2005:176-183
  • 5Luo Qiming, Khoshgoftaar Taghi M. Efficient image segmentation by mean shift clustering and MDL-guided region merging [C] //Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004), Boca Raton, 2004:337-343
  • 6Pan Chen, Zheng Congxun, Wang Haojun. Robust color image segmentation based on. mean shift and marker-controlled watershed algorithm [C] //Proceedings of the 2nd International Conference on Machine Learning and Cybernetics, Xi' an, 2003 : 2752-2756
  • 7Cheng Yizong. Mean shift, mode seeking, and clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799
  • 8Subbarao Raghav, Meer Peter. Nonlinear mean shift for clustering over analytic manifolds [C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR' 06), New York, 2006 : 1168-1175
  • 9Li Yingqi, He Mingyi. Texture-based segmentation of high resolution SAR imagos using contourlet transforn'l and mean shift [C] //Proceedings of the 2006 IEEE International Conference on Information Acquisition, Weihai, 2006:201-206
  • 10张松海,陈韬,胡事民.从视频到Flash矢量动画的自动转换[J].计算机辅助设计与图形学学报,2007,19(5):667-671. 被引量:2

二级参考文献23

  • 1叶秀清,顾伟康,肖强.快速模糊分割算法[J].模式识别与人工智能,1996,9(1):66-70. 被引量:27
  • 2Tsai D M,Chen Y H.A fast histogram-clustering approach for multi-level thresholding [J].Pattern Recognition Letters,1992,13:245-252.
  • 3Cheng H D,Chen J R,Li J G.Thresholding selection based on fuzzy C-partition entropy arrpoach [J].Pattern Recognition,1998,31(7):857-870.
  • 4Pornphan DULYAKARN,Yuttapong RANGSASERI.Fuzzy C-Means Clustering Using Spatial Information with Application to Remote Sensing [A].22nd Asian Conference on Remote Sensing [C].Singapore,2001.11.
  • 5Y Zhang,M Brady,S Smith.Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm [J].IEEE Trans.Medical Imaging,2001,20(1):45-57.
  • 6Stan Z Li.Markov Random Field Modeling in Image Analysis [M].Tokyo,Japan,Springer,2001,ISBN 4-431-70309-8.
  • 7Dzung L.Pham,Jerry L.Prince.Adaptive Fuzzy Segmentation of Magnetic Resonance Images [J].IEEE Trans.On Medical Imaging,1999,18(9):737-752.
  • 8Agarwala Aseem.Snaketoonz:a semi-automatic approach to creating cel animation from video[C]//Proceedings of the 2nd International Symposium on Non-Photorealistic Animation and Rendering.Annecy:ACM Press,2002:139-ff
  • 9Wang Jue,Xu Yingqing,Shum Heung-Yeung,et al.Video tooning[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,California,2004:574-583
  • 10Wang J,Thiesson B,Xu Y,et al.Image and video segmentation by anisotropic kernel mean shift[C]//Proceedings of European Conference on Computer Vision,Prague,2004:238-249

共引文献35

同被引文献99

引证文献10

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部