期刊文献+

离散的SI和SIS传染病模型的研究 被引量:13

Study of Some Discrete SI and SIS Epidemic Models
下载PDF
导出
摘要 为了描述个体的死亡、染病者的恢复以及疾病的传染,引入了相应的概率.基于总种群中个体数量为常数的假设,根据染病者能否恢复分别建立了具有生命动力学的离散SI和SIS传染病模型.所得到的结果显示:它们具有与相应连续模型相同的动力学性态,并确定了各自的阈值.在它们的阈值之下,传染病最终将灭绝;在它们的阈值之上,传染病将会发展成为地方病,染病者的数量将趋向于一确定的正常数. The probability is introduced to formulate the death of individuals, the recovery of the infected individuals and incidence of epidemic disease. Based on the assumption that the number of individuals in population is a constant, discrete-time SI and SIS epidemic models with vital dynamics are established respectively corresponding to the case that the infectives can recover from the disease or not. For these two models, the results obtained show that there is the same dynamical behavior as their corresponding continuous ones. And the threshold determining its dynamical behavior is found. Below the threshold the epidemic disease dies out eventually. Above the threshold the epidemic disease becomes an endemic eventually. The number of the infectives approaches a positive constant.
出处 《应用数学和力学》 CSCD 北大核心 2008年第1期104-110,共7页 Applied Mathematics and Mechanics
基金 国家自然科学基金(重点)资助项目)预防和控制突发恶性传染病的动力学机制和数学方法)(10531030) 国家自然科学基金资助项目(中国艾滋病的控制与治疗-宏观与微观数学模型研究)(10701053)
关键词 离散传染病模型 动力学性态 不动点 稳定性 discrete epidemic model dynamical behavior fixed point stability
  • 相关文献

参考文献10

  • 1Anderson R M, may R M. Infectious Diseases of Humans, Dynamics and Control [M]. Oxford: Univ Press Oxford, 1991.
  • 2李健全,张娟,马知恩.一类带有一般接触率和常数输入的流行病模型的全局分析[J].应用数学和力学,2004,25(4):359-367. 被引量:42
  • 3王拉娣,李建全.一类带有非线性传染率的SEIS传染病模型的定性分析[J].应用数学和力学,2006,27(5):591-596. 被引量:22
  • 4Allen L J S. Some discrete-time SI, SIR, and SIS epidemic models[ J ]. Math Biosci, 1994,124( 1 ):83- 105.
  • 5Allen L J S, Burgin A M. Comparison of deterministic and stochastic SIS and SIR models in discrete time[ J]. Math Biosci, 2000,163( 1 ) : 1-33.
  • 6Castillo-Chavez C, Yakubu A-A. Dispersal, disease and life-history evolution[J]. Math Biosci,2001, 173(1) :35-53.
  • 7Castillo-Chavez C, Yakubu A-A. Discrete-time S-I-S models with complex dynamics[J]. Nonlinear Analysis ,2001,47(7) :4753-4752.
  • 8Zhou Y, Fergola P. Dynamics of a discrete age-structured SIS models[J]. Discrete and Continuous Dynamical System-Series B ,2004,4(3) :841-850.
  • 9Li X,Wang W.A discrete epidemic model with stage structure[J].Chaos,Solitons and fractals,2005,26(3):947-958.
  • 10Cull P. Local and global stability for population models[ J ]. Biol Gybern, 1986,54 ( 1 ) : 141- 149.

二级参考文献19

  • 1Kermack W O, McKendrick A G. Contributions to the matlhematical theory of epidemics-Part 1[J].Proc RoySoc London Ser A, 1927,115(3) :700-721.
  • 2Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes[J]. J Math Biol, 1992,30(4):693-716.
  • 3Li J, Ma Z. Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J]. Math Comput Modelling ,2002,35(11/12) :1235-1243.
  • 4Heesterbeck J A P, Metz J A J. The saturating contact rate in marriage-and epidemic models[ J]. J Math Biol, 1993,31(2) :529-539.
  • 5Brauer F, Van den Driessche P. Models for transmission of disease with immigration of infectives[ J].Math Biosci, 2001,171(2): 143-154.
  • 6Han L,Ma Z,Hethcote H W. Four predator prey models with infectious diseases[J]. Math Comput Modelling, 2001,34(7/8): 849-858.
  • 7LaSalle J P. The Stability of DynamicalSystem [ M]. New York: Academic Press, 1976.
  • 8Jeffries C, Klee V, Van den Driessche P. When is a matrix sign stable? [ J]. Canad J Math, 1977,29(2) :315-326.
  • 9Wang W, Ma Z. Global dynamics of an epidemic model with delay[J]. Nonlinear Analysis: Real World Applications,2002,3:809-834.
  • 10Wang W. Global behavior of an SEIRS epidemic model time delays[J]. Applied Mathematics Letters,2002,15(2):423-428.

共引文献62

同被引文献20

  • 1汤在祥,高清松,徐辰武.非线性方程的Excel拟合及其应用[J].中国农学通报,2005,21(3):306-310. 被引量:9
  • 2李建全,马知恩,周义仓.GLOBAL ANALYSIS OF SIS EPIDEMIC MODEL WITH A SIMPLE VACCINATION AND MULTIPLE ENDEMIC EQUILIBRIA[J].Acta Mathematica Scientia,2006,26(1):83-93. 被引量:15
  • 3John E. Franke, Abdul - Aziz Yakubu. Disease - induced mortality in density - dependent discrete - time S - I - S epidemic models [ J ]. J. Math. Biol, 2008, 57:755 - 790.
  • 4Castillo - Chavez, C. , Yakubu. A Discrete - time S - I - S models with complex dynamics[ J]. Nonlinear Anal, 2001.
  • 5Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discrete - time SIand SISepidemic models [ J ]. mathemztical bioscieces and engineering, 2007, 4 (4) : 699 - 710.
  • 6S. N. Elaydi. An Introduction to Difference Equations [ M ]. ThirdEdition, Springer, New York, 2004.
  • 7Josef Hofbauer, Joseph W. - H. So. Uniform persistence and Repellors for Maps [ J ]. Proceedings of the American Mathematical Society, 1989, 107(4): 1129-1142.
  • 8John E Franke, Abdul-Aziz Yakubu. Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models[J]. J Math Biol, 2008, 57: 755-790.
  • 9Castillo-Chavez C Yakubu. A Discrete-time S-I-S models with complex dynamics[J]. Nonlinear Anal, 2001, 47: 4753-4762.
  • 10Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discrete-time SI and SIS epidemic models[J]. Mathemztical Bioscieces and Engineering, 2007, 4(4): 699-710.

引证文献13

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部