摘要
给出了Flow Shop调度问题的数学模型,介绍了三种用于求解该问题的启发式算法,根据普通遗传算法与启发式算法的互补特性,提出了结合两者各自优势的改进遗传算法.通过两个不同规模的经典算例对算法的优化性能进行了对比分析,结果表明,采用了保优策略的改进遗传算法的搜索能力优于启发式算法及普通遗传算法,并具有较强的鲁棒性.
This paper introduces a mathematical model of Flow Shop Problem(FSP), and then gives three heuristic algorithms to solve it. The new improved Genetic Algorithm(GA) is presented by combining the advantages of standard GA and heuristic algorithm. With two benchmark FSPs, the simulation results show that the new method of GA by using elitist selection strategy has better performance than standard GA and heuristic algorithm, and has strong robustness.
出处
《宁夏大学学报(自然科学版)》
CAS
北大核心
2007年第4期322-325,共4页
Journal of Ningxia University(Natural Science Edition)
关键词
遗传算法
流水作业调度
启发式算法
genetic algorithm
flow shop scheduling
heuristic algorithm