期刊文献+

单站无源定位中的一种简单粒子滤波算法

A Simple Particle Filtering in Single Observer Passive Location
下载PDF
导出
摘要 提出了一种简单的正则粒子滤波,克服了标准粒子滤波在用于单站无源定位中时出现的粒子匮乏现象,将粒子滤波成功的应用到了无源定位中.通过计算机仿真表明,这种简单的正则粒子滤波能有效缩短定位时间,提高定位精度. A simple regularized particle filter is described. Particle filter is successfully introduced into single observer passive location. It is shown that the standard particle filter in this case suffers from sample impoverishment seriously. The simple regularized particle filter can overcome this phenomenon, and simulations show that this algorithm can shorten the time of location and improve the precision.
作者 谭爱国
出处 《湖北民族学院学报(自然科学版)》 CAS 2007年第4期411-414,共4页 Journal of Hubei Minzu University(Natural Science Edition)
关键词 无源定位 贝叶斯估计 粒子滤波 重采样 正则粒子滤波 passive location Bayesian estimation particle filter resampling regularized particle filter
  • 相关文献

参考文献9

  • 1Julier S, Uhlman J, Durrant -Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[ J]. IEEE Transactions on Automatic Control,2000,3 : 88 - 96.
  • 2Gordon N J, Salmond D J, Smith A F M, Novel approach to nonlinear/non- Gaussian Bayesian state estimation[J]. IEE Proceedings- Radar, Sonar and Navigation,1993,140(2) : 107 -113.
  • 3Doucet A, Godsill S. On sequential Monte Carlo sampling methods for Bayesian filtering [ R ]. Cambridge:University of Cambridge, 1998:1 -36.
  • 4J Carpenter, P Clifford, P Fearnhead. Improved Particle Filter for Nonlinear Problems[ J]. IEE proc Radar Sonar Navlg, 1999, 146( 1 ) :6 -45.
  • 5Liu J S, Chen R. Sequential Monte Carlo Methods for Dynamical Systems[ J ]. Journal of the American Statistical Association, 1998,93 (5) :1 023 -1044.
  • 6Doucet A, Gordon N. Sequential Monte Carlo Methods in Practice [ M ]. New York : Springer - Verlag,2001.
  • 7杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 8曹斌芳,何怡刚,胡惟文,傅祖清.一种改进型的FIR数字滤波器设计[J].现代电子技术,2006,29(4):3-5. 被引量:8
  • 9马才根.基于FPGA的FIR滤波器的设计与实现[J].现代电子技术,2005,28(22):73-74. 被引量:4

二级参考文献73

  • 1[美]VinayKIngle JohnGProakis 刘树堂译.数字信号处理及其Matlab实现[M].西安:西安交通大学出版社,2002..
  • 2TMS320C5416 Evaluation Module User's Guide. Texas Instruments Inc, 2002.
  • 3Developer's Kit for Texas Instruments DSP User's Guide.Math Works Inc. 2001.
  • 4JAZWINSKI A H. Stochastic Processes and Filtering Theory[M]. New York: Academic Press, 1970.
  • 5ANDERSON B D, MOORE J B. Optimal Filtering [ M]. New Jersey: Prentice-Hall, 1979.
  • 6BLOM H A P, BAR-SHALOM Y. The interacting multiple model algorithm for systems with Markovian switching coefficients [ J]. IEEE Trans on Automatic Control, 1988, 33 (8) :103 - 123.
  • 7BUCY R S, SENNE K D. Digital synthesis of nonlinear filters [ J ]. Automatica, 1971 , 7 ( 3 ) :287 - 298.
  • 8HAMMERSLEY J M, MORTON K W. Poor man's Monte Carlo [J]. J of the Royal Statistical Society B, 1954, 16( 1 ) :23 -38,
  • 9HANDSCHIN J E, MAYNE D Q. Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering [J].Int J Control, 1969, 9(5): 547-559.
  • 10ZARITSKII V S, SVETNIK V B, SHIMELEVICH L I. Monte-Carlo techniques in problems of optimal information processing [J]. Automation and Remote Control, 1975, 36 (3) :2015 -2022.

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部