期刊文献+

基于粒子群算法的FBG峰值波长检测技术 被引量:1

Wavelength Multiplexing Detection Technique for FBG Sensors Based on PSO
下载PDF
导出
摘要 提出了一种新的光纤布拉格光栅(FBG)峰值波长检测技术,将改进粒子群算法(PSO)与峰值波长检测技术相结合,应用于在光纤光栅传感网络的波长检测,解决了传统波峰检测技术要求光纤光栅传感器带宽不能重叠和最小位移波形检测计算速度慢的问题。仿真计算结果证明,即使相邻两个FBG传感器的波峰相互叠加时,运用这种方法仍能取得较高的检测精度。 A new wavelength detection technology about fiber Bragg grating(FBG) sensors which is combined with particles swarm optimization(PSO) algorithm is reported. It can be used in wavelength multiplexing techniques(WMT) and solves the limitations of conventional peak detection(CPD) technique only used for sensors separated and the minimum variance shift waveform technique's slow calculation speed. The technique has been demonstrated to offer high detection accuracy even when the spectrum of the FBGs in partial overlap with that of neighboring FBGs within a wavelength division multiplexed sensor array.
出处 《半导体光电》 EI CAS CSCD 北大核心 2007年第6期884-887,共4页 Semiconductor Optoelectronics
关键词 光纤光栅 粒子群优化算法 波分复用 波长检测 FBG PSO wavelength-division multiplexing wavelength detection
  • 相关文献

参考文献9

  • 1Othonos A, Kalli K. Fiber Bragg Grating : Fundamentals and Application in Telecommunications and Sensing [ M]. Norwood, MA: Artech. House, 1999.
  • 2Kersey A D. Fiber grating sensors [J]. J. Lightwave Teehnol. , 1997, 15(8): 1 442-1 662.
  • 3Davis M A, Bellemore D G, Putnam M A, et al. Interrogation of 60 fibre Bragg grating sensor with microstrain resolution capability[J]. Electron. Lett. , 1996, 32(15). 1 393-1 394.
  • 4Davis M A, Kersey A D. Matched filter interrogation technique for fibre Bragg grating arrays[J]. Electron. Lett. , 1995, 31(10): 822-823.
  • 5GongJ M, MacAlpine J M K, Chan C C, et al. A novel wavelength detection technique for fiber Bragg grating sensors [J]. IEEE Photon. Technol. Lett., 2002, 14(5): 678-680.
  • 6Kennedy J, Eberhart R. Swarm Intelligence[M ]. San Francisco: Morgan Kaufmann Publishers, 2001.
  • 7李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 8阮伟,阮双琛.光纤传感技术新进展[M].北京:科学技术出版社,2005.
  • 9Xu M G, Geiger H, Dakin J P. Modeling and performance analysisof a fiber Bragg grating interrogation system using an acousto-optic tunable filter[J]. J. Lightwave Technol. , 1996, 14: 391-396.

二级参考文献8

  • 1Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 2Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.
  • 3Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001.
  • 4Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476.
  • 5Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434.
  • 6Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607.
  • 7Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 8李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:302

共引文献397

同被引文献12

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部