摘要
作者用Burnett函数作为展开基底表示分子速度分布函数和Boltzmann方程,并由此证明,Boltzmann碰撞矩阵元的计算归结为约化积分、Clebsch-Gordan系数和Brody-Moshinsky系数的计算。为了提高计算效率,作者将这些系数用超几何函数予以表示,并由此提出了高效的计算方法。
The molecular velocity distribution function and the Boltzmann equation in the kinetic theory of gases are expanded in a basis of orthogonal Burnett functions.Hence the calculation of the Boltzmann collision matrix elements can be realized by evaluating the reduced integrals,the Clebsch Gordan coefficient and the Brody Moshinsky coefficients.These coefficients are expressed by the hypergeometric functions and a method with high efficiency in computations in presented.
关键词
BOLTZMANN方程
碰撞矩阵元
Burnett函数
Expansion of velocity distribution function in Burmett functions
Boltzmann collision matrix element
Reduced integrala
Clebsch Gordan coefficient
Brody Moshinsky coefficient.