期刊文献+

改进的模糊Modular神经网络在既有建筑可靠性鉴定中的应用 被引量:3

Application of Improved Fuzzy Modular Neural Network for Reliability Appraisal of Existing Buildings
下载PDF
导出
摘要 在Takagi-Sugeno模糊逻辑系统的基础上,提出了改进的模糊Modular神经网络模型(IF-MNN),并将该模型应用于既有建筑的可靠性鉴定。改进的模型是将传统的模糊Modular神经网络模型中的单输出改进为多输出。这种改进的多输入多输出的模糊Modular神经网络模型具有预测性能好、训练学习速度快的优点,它的系统门网络采用模糊C均值聚类算法代替K-means算法,专家网络的训练中引进了先进的Levenberg-Marquardt算法。在应用改进的模糊Modular神经网络模型对既有建筑进行可靠性鉴定的过程中,综合考虑了各主要因素对既有建筑可靠性鉴定等级的影响,并将经量化处理的影响因素作为网络的外部输入,将网络计算得到的4个输出值分别作为样本对应于不同可靠性等级的隶属度,建筑可靠性鉴定的最终评判等级为最大隶属度所对应的等级。训练和预测样本的计算结果证明了改进的模糊Modular神经网络模型在既有建筑可靠性鉴定中应用的可行性和有效性。 Based on the Takagi-Sugeno fuzzy logic system, the theory of improved fuzzy modular neural network (IFMNN) and its application for reliability appraisal of existing buildings were proposed in this paper. The singular output of the conventional modular neural network was changed into multiple outputs in IFMNN. The multiple-input-multiple-output IFMNN has good predicting capability and quick training speed. Fuzzy cmeans algorithm was used to train the system gating network of IFMNN instead of K-means algorithm. Also, Levenberg-Marquardt algorithm was introduced in the training of expert network of IFMNN. Varied factors having the influence on the grade of reliability appraiser were taken into considerations in the process of reliability appraisal of the existing buildings using fuzzy modular neural network, in which the quantified factors were reckoned as outside input. In addition, the four outputs computed by the network were equivalent to the membership degree of reliability grades, and the final grade of the reliability appraiser was correspondent to the grade of the biggest membership degree. The computing results from training and predicting samples indicate that applying the improved modular neural network into the reliability appraisal of existing buildings is practical and effective.
出处 《结构工程师》 2007年第6期37-42,共6页 Structural Engineers
关键词 Modular神经网络 可靠性鉴定 既有建筑 模糊C均值 LEVENBERG-MARQUARDT 算法 modular neural network, reliability appraisal, existing building, fuzzy C-means, Levenberg-Marquardt algorithm
  • 相关文献

参考文献7

  • 1Takagi T, Sugeno M. Fuzzy Identification of Systems and Its Application to Modeling and Control [ J ]. IEEE SMC, 1985, 15(1) :116-132.
  • 2于百胜,黄文虎.一种模糊Modular神经网络模型及其应用[J].强度与环境,2002,29(3):43-46. 被引量:1
  • 3Mohammad N. Almasril, Jagath J. Kaluarachchi. Modular Neural Networks to Predict the Nitrate Distribution in Ground Water Using the On-ground nitrogen loading and recharge data [ J ]. Environmental Modelling and Software, 2005,20 ( 7 ) :851-871.
  • 4Soh Wee-Seng, Tham Chen-Khong. Modular Neural Networks for Multi-service Connection Admission Control [ J ]. Computer Networks, 2001,36 ( 2-3 ) : 181- 202.
  • 5赵振宇 徐用懋.模糊理论和神经网络的基础与应用[M].北京:清华大学出版社,1995..
  • 6Onder Efe M, Kaynak Okyay. A Novel Optimization Procedure for Training of Fuzzy Inference Systems by Combining Variable Structure Systems Technique and Levenberg-Marquardt Algorithm [ J ]. Fuzzy Sets and Systems, 2001,122( 1 ) :153-165.
  • 7四川省建设委员会.GB50292-1999民用建筑可靠性鉴定标准[S].北京中国建筑工业出版社,1999.

二级参考文献4

  • 1王士同.模糊神经网络及其应用[M].北京:北京航空航天大学出版社,1998.205-219.
  • 2Hayashi Y,Buckly J.Direct fuzzification of neural networks[C].Proc.of 1st Asian Fuzzy Systems Symposium,Singapore,1993
  • 3Blanco M,et al.A learning procedure to identify weighted rules by neural networks[J].Int.J.Fuzzy sets and systems,1995,69(1)
  • 4吴小俊,曹奇英,王士同,陈保香,刘同明.一种模糊神经控制系统及其应用[J].电机与控制学报,1999,3(2):89-92. 被引量:4

共引文献15

同被引文献17

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部