期刊文献+

一种基于动态剪枝二叉树SVMs的高炉故障诊断新方法 被引量:5

Novel blast furnace fault diagnosis method based on dynamic pruned binary tree SVMs
下载PDF
导出
摘要 高炉故障诊断是一个多类分类问题,且各个故障类别间具有一定的关系,在识别其中某一类故障时,并不需要区分全部故障的类别,为此提出了基于剪枝二叉树的支持向量机改进算法,每次识别时都去除相对没有价值的支持向量,根据类间相似度重新构造二叉树,剪掉没有价值的枝节,减少支持向量机个数,加速识别过程。通过对高炉故障模型的仿真实验,比较不同多类分类算法的性能,证明该方法能够在保证识别准确率的情况下提高故障诊断速度。 Blast furnace fault diagnosis is a multi-class classification problem, and the fault sorts have special relation among each other. It is not necessary to distinguish all the fault sorts when identifying one of them. In this paper, a novel algorithm based on pruned binary tree SVMs is proposed. In order to improve classification efficiency, we take out the relatively flimsy support vectors in identification process; construct a new binary tree without flimsy branches by defining similarities between every two sorts. Compared with different multi-class classification algorithms, the simulation results of blast furnace fault diagnosis show that this algorithm can improve the efficiency and speed of blast furnace fault diagnosis while insuring the identification accuracy.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第12期2147-2151,共5页 Chinese Journal of Scientific Instrument
基金 教育部流程工业自动化重点实验室基金资助项目
关键词 剪枝二叉树 支持向量机 多类分类 故障诊断 pruned binary tree support vector machine multi-class identification fault diagnosis
  • 相关文献

参考文献9

  • 1SAMANTA B.Gear fault detection using artificial neural networks and support vector machines with genetic algorithms[J].Mechanical Systems and Signal Processing,2004,18(3):625-644.
  • 2VAPNIK V N.Statistical learning theory[M].New York:Wiely,1998.
  • 3WANG A N,ZHANG L N,GAO N,et al.Fault diagnosis of blast furnace based on SVMs[C].Proceedings of Sixth World Congress on Intelligent Control and Automation,Dalian,2006:5615-5618.
  • 4王安娜,张丽娜,高楠,孙静.基于DAGSVM的高炉故障诊断研究[J].信息与控制,2006,35(5):619-623. 被引量:2
  • 5OSUNA E,FREUND R.Training support vector machines:an application to face detection[A].Proc.of Computer Vision and Pattern Recognition[C].San Juan,Puerto Rico,IEEE Computer Soc.,1997:130-136.
  • 6JOACHIMS T.Text categorization with support vector machines:Learning with many relevant features[C].Proceedings of the European Conference on Machine Learning,Berlin,Springer,1998.
  • 7YANG Y M,LIU X.A re-examination of text categorization methods[C].Proceedings of ACM SIGIR,Conference on Research and Development in Information Retrieval,1999.
  • 8SUNGMOON C,SANG H O,SOO-YOUNG L.Support vector machines with binary tree architecture for multi-class classification[J].Neural Information Processing-Letters and Reviews,2004,2(3):47-51.
  • 9黄锡山,陈哲.模糊相似度景像匹配算法研究[J].北京航空航天大学学报,2002,28(5):532-535. 被引量:4

二级参考文献8

  • 1周志强.四组合导航系统中的景像匹配技术研究[M].北京:北京航空航天大学自动控制系,1998..
  • 2李景银,郭宏飞,周伟.高炉异常炉况判断专家系统的设计与实现[J].东北大学学报(自然科学版),1997,18(2):178-182. 被引量:2
  • 3Vapnik V N.Statistical Learning Theory[M].New York:Wilev,1998.
  • 4Maruyama K I,Maruyama M,Hidetoshi M,et al.A method to make multiple hypotheses with high cumulative recognition rate using SVMs[J].Pattern Recognition,2004,37 (2):241~251.
  • 5Kenel U.Pairwise Classification and Support Vector Machines Advances in Kernel Methods-Support Vector Learning[M].Cambridge,MA:MIT Press,1999.
  • 6Platt J C,Cristianini N,Shawe-Taylor J.Large margin DAGs for multiclass classification[A].Advances in Neural Information Processing Systems 12[C].Cambridge,MA,USA:MIT Press,2000.547~553.
  • 7田金文,柳健,张天序.基于模糊信息理论的景像匹配方法[J].红外与激光工程,1998,27(3):28-31. 被引量:1
  • 8王玉涛,夏靖波,周建常,王师.高炉参数学习用模糊神经网络专家系统[J].钢铁研究学报,1999,11(5):72-76. 被引量:4

共引文献4

同被引文献34

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部