摘要
高炉故障诊断是一个多类分类问题,且各个故障类别间具有一定的关系,在识别其中某一类故障时,并不需要区分全部故障的类别,为此提出了基于剪枝二叉树的支持向量机改进算法,每次识别时都去除相对没有价值的支持向量,根据类间相似度重新构造二叉树,剪掉没有价值的枝节,减少支持向量机个数,加速识别过程。通过对高炉故障模型的仿真实验,比较不同多类分类算法的性能,证明该方法能够在保证识别准确率的情况下提高故障诊断速度。
Blast furnace fault diagnosis is a multi-class classification problem, and the fault sorts have special relation among each other. It is not necessary to distinguish all the fault sorts when identifying one of them. In this paper, a novel algorithm based on pruned binary tree SVMs is proposed. In order to improve classification efficiency, we take out the relatively flimsy support vectors in identification process; construct a new binary tree without flimsy branches by defining similarities between every two sorts. Compared with different multi-class classification algorithms, the simulation results of blast furnace fault diagnosis show that this algorithm can improve the efficiency and speed of blast furnace fault diagnosis while insuring the identification accuracy.
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2007年第12期2147-2151,共5页
Chinese Journal of Scientific Instrument
基金
教育部流程工业自动化重点实验室基金资助项目
关键词
剪枝二叉树
支持向量机
多类分类
故障诊断
pruned binary tree
support vector machine
multi-class identification
fault diagnosis