期刊文献+

有限域F_q上一类超曲面上zeta函数的计算

Computing zeta functions of a hypersurface over finite field F_q
下载PDF
导出
摘要 设F=Fq是一个q元有限域,其中q=pf,f≥1,p是一个奇素数.利用有限域F=Fq上一类方程:a1xd111...xd1,m+m1+1+a2xd121...xd2,m+m1+1xd2,m+2m+2+...+akxd1k1...xdk,m+m1+1...xdkm,+km+k=0,其中m≥0,k≥1,dij≥0,ai∈F*,b∈F当指数满足一定条件时,在(F*)m+k上解数的直接公式结果,给出相应射影簇的zeta函数的可计算公式.最后,应用这些公式计算了一具体方程的zeta函数. Let F be a finite field with q = p^f elements,where p is a prime number. The authors applied the explicit formula for the number of solutions of the following equation to obtain several formulas of it' s zeta function: a1x1^d11…xm+1^d1.m+1+a2x1^d21…xm+1^d2.m+1xm+2^d2.m+2+…akx1^dk1…xm+k^dk.m+k=0, in F^q where m≥0,k≥1,djj≥0,ai∈F^*,b∈F,(d1,m+1,d2,m+2,…,dk,m+k,q-1)=1. Finally, the authors applied thoseformulas to compute the zeta function of a given equation.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期1173-1177,共5页 Journal of Sichuan University(Natural Science Edition)
基金 安徽高校省级自然科学研究重点项目(KJ2007A127ZC)
关键词 有限域 射影簇 ZETA函数 finite field, solution of equation, character sum
  • 相关文献

参考文献9

  • 1Matsuo K,Chao J,Tsujii S. An improved baby step giant step algorithm for point counting of hyperelliptic curves over finite fields ANTS-V [ M]. Berlin/New York: Springer-Verlag, 2002.
  • 2Schoof R. Elliptic curves over finite fields and the computation of square roots mod p[J]. Math. Comp, 1985, 44: 483.
  • 3Satoh T. The canonical lift of an ordinary elliptic curve over a finite field and it's points counting[J]. J Ramanujan Math Soc, 2000,15 : 247.
  • 4Lauder A G B, Wan D. Computing zeta functions of Artin-Schreier curves over finite fields [ J ]. London Mathematical Society JCM, 2002,5 : 34.
  • 5Lauder A G B, Wan D. Computing zeta functions of Artin-Schreier curves over finite fields Ⅱ [J]. Journal of Complexity, 2004,20: 331.
  • 6Lauder A G B. Deformation theory and the computation of zeta functions[J]. Proceedings of the London Mathematical Society, 2004,88(3):565.
  • 7Wang W S,Sun Q. The number of solution of certain equations over a finite field[J ]. Finite Fields and Their Applications, 2005,11 (2) : 182.
  • 8王文松,孙琦.有限域Fq上一类超曲面的有理点个数[R].第三届全国数论与代数几何学术交流会上学术报告,成都,2005.
  • 9王文松,孙琦.有限域上一类方程解数的一个注记[J].四川大学学报(自然科学版),2005,42(2):245-249. 被引量:1

二级参考文献16

  • 1王文松,孙琦.有限域上一类方程解数的直接公式[J].数学年刊(A辑),2005,26(3):391-396. 被引量:3
  • 2Lidl R, Niederreiter H. Finite fileds, encyclopedia of mathematics and its applications[M]. New York:Addision-Wesley, 1983.
  • 3Carlitz L. Pairs of quadratic equations in a finite fields[J]. Amer. J. Math, 1954, 76:137-154.
  • 4Cohen E. Congruence representations in algbraic number field[J]. Trans. Amer. Math. Soc, 1953, 75:444-470.
  • 5Hodges G H. Representations by bilinear froms in a finite field[J]. Duke Math, 1955, 22:497-509.
  • 6Hua L K, Vandiver H S. Characters over certain types of rings with applications to the theory of equations in a finite field[J]. Proc. Nat. Acad. Sci , 1949, 35:94-99.
  • 7Weil A. Number of solution of equations in a finite field[J]. Bull. Amer. Math. Soc, 1949, 55:497-508.
  • 8Ax J. Zeros of polynomials over finite fields[J]. Amer. J. Math, 1964, 86:255-261.
  • 9Joly J R. Equations et varietes algebriques sur un corps fini[J]. Enseign. Math, 1973, 19(2):1-117.
  • 10Wan D. Zeros of diagonal equations over finite fields[J]. Proc. AMS, 1988, 103:1049-1052.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部