期刊文献+

基于知识粗糙度的混合变量决策树生成方法 被引量:2

Construction of Hybrid Decision Tree Based on Knowledge Roughness
下载PDF
导出
摘要 单变量决策树难以反映信息系统属性间的关联作用,构造的决策树往往规模较大。多变量决策树能较好地反映属性间的关系,得到非常简单的决策树,但使构造的决策树难以理解。针对以上两种决策树特点,提出了基于知识粗糙度的混合变量决策树的构造方法,选择知识粗糙度较小的分类属性来构造决策树。实验结果表明,这是一种操作简单、效率很高的决策树生成方法。 It is difficult for tmivariate decision tree to reflect the relationship of attributes, multivariate decision tree can resolve this problem preferably, the former produces big tree, the latter gains simple tree but difficult to explain. Aim to upwards points, in this paper, advance a knowledge roughness based approach to hybrid decision tree, select less knowledge roughness as tested attribute to construct decision tree. As a resuit, find this is a good approach with simple operation and higher efficiency.
出处 《计算机技术与发展》 2008年第1期56-58,62,共4页 Computer Technology and Development
基金 安徽省自然科学基金项目(2006kj091B)
关键词 粗糙集 知识粗糙度 单变量决策树 多变量决策树 混合变量决策树 rough sets knowledge roughness univariate decision tree multivariate decision tree hybrid decision tree
  • 相关文献

参考文献7

  • 1Breiman L, Friedman J H, Olshen R A. Classification and Regression Trees[M]. Belmont: Wadsworth International Group, 1984.
  • 2Yin De - Sheng, Wang Guo - Yin, Wu Yu. A Self - learning Algorithm for Decision Tree Pre- Pruning[ C] // Proceedings of the Third International Conference on Machine Learning and Cybernetics. Shanghai: [s. n. ] ,2004.
  • 3苗夺谦,王珏.基于粗糙集的多变量决策树构造方法[J].软件学报,1997,8(6):425-431. 被引量:120
  • 4胡学钢 张冬艳.一种新的基于粗集的决策树构造算法.计算机科学,2005,32(8):7-9.
  • 5Pawlak Z. Rough Set Approach to Multi - Attribute Decision Analysis[J]. European Journal of Operational Research, 1994, 72(3) :443 - 459.
  • 6曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 7沙慧新.基于知识粗糙度和拓展属性约简的若干智能挖掘算法的研究[D].福州:福州大学,2004:13-17.

共引文献226

同被引文献10

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部