期刊文献+

GA-BP嵌套算法的理论及应用 被引量:9

The Theory and Application of GA-BP-NESTING Algorithm
原文传递
导出
摘要 分析了BP算法、遗传算法以及GA-BP-APARTING算法的特点,提出了GA-BP-NESTING算法.在人工神经网络的在线学习和离线学习方式下,分别对BP算法、GA算法、GA-BP-APARTING算法和GA-BP-NESTING算法进行了比较研究,研究发现:第一,网络初始权值的赋值对人工神经网络训练影响很大;第二,离线学习方式下GA-BP-NESTING算法效果最佳. This paper analyses characters of BP algorithm, GA algorithm and GA-BP- APARTING algorithm. GA-BP-NESTING algorithm is proposed in this paper. Under the mode of on-line learning, off-line learning of neural network, using three algorithms to train the network respectively: Backpropagation (BP) algorithm,Genetic Algorithm (GA), GA-BP- APARTING algorithm and GA-BP-NESTING algorithm. In the end of the paper, simulating a case under the two modes does a comparative study of the three algorithms. We can obtain the conclusion that initializing weights of networks is vital of training ANN and the GA-BP- NESTING algorithm under the mode of off-line learning is the best.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第1期116-125,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金项目资助(7027304470573101) 中国地质大学(武汉)资源环境经济研究中心开放基金资助 中国地质大学(武汉)优秀青年教师资助计划资助项目(CUGQNW0702) 高等学校博士学科点专项科研基金(20070491011)
关键词 在线学习 离线学习 人工神经网络 BP算法 GA—BP算法 online learning offline learning artificial neural networks BP algorithm GA-BP algorithm
  • 相关文献

参考文献6

  • 1Pineda F J. Generalization of Back-Propagation to recurrent neural networks[J].Phy Rev Let, 1987,59 (19):2229-2232.
  • 2Pineda F J. Recurrent backpropagation and dynamical approach to adaptive neural computation[J]. Neural Computation, 1989,1 (2):161-172.
  • 3Meng Xiangping, Zhang Huaguang, Tan Wanyu. A hybrid method of GA and BP for short-term economic dispatch of hydrothermal poWer systems[J].2000,51 (4) : 341-348.
  • 4Montana D J, Davis L, Training feed Forward neural network using genetic algorithm[C], in:Proc of the llth International Joint Conference on Artificial Intelligence, San Mateo, 1989. 762-767.
  • 5Grefenstette J J. Optimization of control parameters for genetic algorithms[J].IEEE Trans on Systems, Man, and, Cyb,1986,16(1) :122-128.
  • 6Gunter Rudolph. Convergence analysis of canonical genetic algorithms[J]. IEEE Trans of Neural Networks, 1994,5(1):96-101.

同被引文献83

引证文献9

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部