摘要
分析了BP算法、遗传算法以及GA-BP-APARTING算法的特点,提出了GA-BP-NESTING算法.在人工神经网络的在线学习和离线学习方式下,分别对BP算法、GA算法、GA-BP-APARTING算法和GA-BP-NESTING算法进行了比较研究,研究发现:第一,网络初始权值的赋值对人工神经网络训练影响很大;第二,离线学习方式下GA-BP-NESTING算法效果最佳.
This paper analyses characters of BP algorithm, GA algorithm and GA-BP- APARTING algorithm. GA-BP-NESTING algorithm is proposed in this paper. Under the mode of on-line learning, off-line learning of neural network, using three algorithms to train the network respectively: Backpropagation (BP) algorithm,Genetic Algorithm (GA), GA-BP- APARTING algorithm and GA-BP-NESTING algorithm. In the end of the paper, simulating a case under the two modes does a comparative study of the three algorithms. We can obtain the conclusion that initializing weights of networks is vital of training ANN and the GA-BP- NESTING algorithm under the mode of off-line learning is the best.
出处
《数学的实践与认识》
CSCD
北大核心
2008年第1期116-125,共10页
Mathematics in Practice and Theory
基金
国家自然科学基金项目资助(7027304470573101)
中国地质大学(武汉)资源环境经济研究中心开放基金资助
中国地质大学(武汉)优秀青年教师资助计划资助项目(CUGQNW0702)
高等学校博士学科点专项科研基金(20070491011)