摘要
本文研究一类高阶线性齐次与非齐次迭代级整函数系数微分方程解的增长性问题.当存在某个系数或自由项对方程解的性质起主要支配作用时,得到了方程解的迭代级及其零点的迭代收敛指数的精确估计,推广了已有的结果.
In this paper, we investigate growth problems of solutions of a type of homogeneous and nonhomogeneous higher order linear differential equations with entire coefficients of iterated order. For this type of equations, we obtain precise estimate of iterated order and iterated covergence exponent of the zeros of solutions when some coefficient or free term is mainly dominanting to the properties of the solutions. We also improve the results obtained by some authors.
出处
《数学杂志》
CSCD
北大核心
2008年第1期31-38,共8页
Journal of Mathematics
基金
国家自然科学基金资助项目(10771121)
高校博士点专项科研基金(20060422049)
关键词
线性微分方程
整函数
迭代级
迭代收敛指数
小函数
linear differential equation
entire function
iterated order
iterated covergence exponent small function