期刊文献+

增生算子方程的具误差的Ishikawa迭代序列的强收敛定理 被引量:4

STRONG CONVERGENCE THEOREMS OF ISHIKAWA ITERATION METHOD WITH ERRORS FOR EQUATIONS INVOLVING ACCRETIVE OPERATORS
下载PDF
导出
摘要 本文研究了Banach空间中Lipschitz的增生算子T的方程的解的迭代逼近问题.利用Ishikawa迭代法,证明了具误差的Ishikawa迭代序列强收敛到方程的唯一解,得到了一般的收敛率估计式. The purpose of this paper is to investigate the iterative approximation problem of solution of the equation for the Lipschitz accretive operator T in Banach spaces. The authors prove that the Ishikawa iterative sequence with errors converges strongly to the unique solution of the equation. Moreover, our result provides a general convergence rate estimate for such a sequence.
作者 王绍荣 熊明
出处 《数学杂志》 CSCD 北大核心 2008年第1期39-44,共6页 Journal of Mathematics
基金 云南省教育厅科研基金项目(KY416140)
关键词 实BANACH空间 增生算子 迭代序列 收敛率估计 real Banach space accretive operator Ishikawa iterative process with errors convergence rate estimate
  • 相关文献

参考文献7

  • 1Browder F.E..Nonlinear mapping of nonexpansive and accretive type in Banach spaces[J].Bull.Amer.Math.Soc.,1967,73:875-882.
  • 2Morales C.P..Seudocontractive mapping and Leray-Schauder boundary condition.Comment[J].Math.Univ.Carolina.,1979,20:745-746.
  • 3Liu Liwei.Strong convergence of iteration methods for equations involving accretive operators in Banach spaces[J].Nonlinear Anal.,2000,42:271-276.
  • 4Tan K.K.,Xu H.K..Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces[J].Math.Anal.Appl.,1993,178:9-21.
  • 5曾六川.Banach空间中关于增生算子方程的迭代法的强收敛定理[J].数学年刊(A辑),2003,24(2):231-238. 被引量:13
  • 6Liu Liwei.Approximation of fixed points of a strictly pseudocontractive mapping[J].Proc.Amer.Math.Soc.,1997,125:1363-1366.
  • 7Sastry K.P.R.Babu G.V.R..Approximation of fixed points of a strictly pseudocontractive mappings on arbitrary closed,convex sets in Banach spaces[J].Proc.Amer.Math.Soc.,2000,128.2907-2909.

二级参考文献15

  • 1曾六川.Lipschitz局部强增殖算子的非线性方程的解的迭代构造[J].应用数学和力学,1995,16(6):543-552. 被引量:12
  • 2Sastry, K. P. R. & Babu, G. V. R., Approximation of fixed points of strictly pseudocontractive mapping on arbitrary closed, convex sets in Banach space [J], Proc. Amer.Math. Soc., 128(2000), 2907-2909.
  • 3Chidume, C. E., An interative process for nonlinear Lipschitzian strongly accretive mapping in Lp spaces [J], J. Math. Anal. Appl., 15(1990), 453-461.
  • 4Chidume, C. E. & Osilike, M. O., Ishikawa iteration process for nonlinear Lipschitz strongly accretive mapping [J], J. Math. Anal. Appl., 192(1995), 727-741.
  • 5Rhoades, B. E., Comments on two fixed point iteration methods [J], J. Math. Anal.Appl., 56(1976), 741-750.
  • 6Martin, R. H., A global existence theorem for autonomous differential equations in Banach space [J], Proc. Amer. Math. Soc., 26(1970), 307-314.
  • 7Morales, C., Pseudocontractive mapping and Leray-Schauder boundary condition [J],Comment. Math. Univ. Carolina, 20(1979), 745-746.
  • 8Reich, S., Constructive techniques for accretive and monotone operators [A], in: Applied Nonlinear Analysis [M], Academic Press, New York, 1979, 335-345.
  • 9Tan, K. K. & Xu, H. K., Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces [J], J. Math. Anal. Appl., 178(1993), 9-21.
  • 10Zeng, L. C., Error bounds for approximation solutions to nonlinear equations of strongly accretive operators in uniformly smooth Banach spaces [J], J. Math. Anal. Appl., 209(1997), 67-80.

共引文献12

同被引文献41

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部