摘要
本文研究了Banach空间中Lipschitz的增生算子T的方程的解的迭代逼近问题.利用Ishikawa迭代法,证明了具误差的Ishikawa迭代序列强收敛到方程的唯一解,得到了一般的收敛率估计式.
The purpose of this paper is to investigate the iterative approximation problem of solution of the equation for the Lipschitz accretive operator T in Banach spaces. The authors prove that the Ishikawa iterative sequence with errors converges strongly to the unique solution of the equation. Moreover, our result provides a general convergence rate estimate for such a sequence.
出处
《数学杂志》
CSCD
北大核心
2008年第1期39-44,共6页
Journal of Mathematics
基金
云南省教育厅科研基金项目(KY416140)
关键词
实BANACH空间
增生算子
迭代序列
收敛率估计
real Banach space
accretive operator
Ishikawa iterative process with errors
convergence rate estimate