期刊文献+

协同过滤的一种个性化推荐算法研究 被引量:27

Improved personalized recommendation algorithm in collaborative filtering
下载PDF
导出
摘要 在分析传统推荐算法不足的基础上,提出一种稀疏矩阵下的个性化改进策略。首先进行一对一的个性化预测,得到虚拟用户评分矩阵,在此基础上再进行综合预测。该方法避免了传统推荐算法中推荐值与用户相似度不密切相关的弊端,提高了协同过滤的预测精度,尤其是在矩阵极端稀疏情况下的预测精度。最后通过实验验证了算法的有效性和优越性。 This paper analyzed the disadvantages of the traditional collaborative filtering and advanced a kind of personalized predictive strategy:one to one prediction to correct this situation to improve the predictive accuracy in sparse matrix. To prove the superiority of the: proposed algorithm, this paper used cosine similarity and pearson similarity to measure the similarity among users and then produced the predictions using traditional collaborative filtering and the new personalized predictive algorithm. The experimental results prove the validity and superiority of the proposed algorithm at last.
出处 《计算机应用研究》 CSCD 北大核心 2008年第1期39-41,58,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(70671016 70272050)
关键词 协同过滤 稀疏矩阵 相似度 个性化推荐 collaborative filtering sparse matrix similarity personalized recommendation
  • 相关文献

参考文献4

  • 1HERLOCKER J,KONSTAN J,BORCHERS A,et al.An algorithmic framework for performing collaborative filtering[C]//Proc of Confe-rence on Research and Development in Information Retrieval.New York:Springer,1999:263-266.
  • 2GOLDBERG D,NICHOLS D,OKI B M,et al.Using collaborative filtering to weave an information tapestry[J].Communications of the ACM,1992,35(12):61-70.
  • 3SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]//Proc of the 10th International World Wide Web Conference.New York:Springer,2001:285-295.
  • 4邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558

二级参考文献13

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献557

同被引文献178

引证文献27

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部