期刊文献+

适于大规模数据集的块增量学习算法:BISVM 被引量:3

BISVM:block-based incremental training algorithm of SVM for very large dataset
下载PDF
导出
摘要 对支持向量机的大规模训练问题进行了深入研究,提出一种类似SMO的块增量算法。该算法利用increase和decrease两个过程依次对每个输入数据块进行学习,避免了传统支持向量机学习算法在大规模数据集情况下急剧增大的计算开销。理论分析表明新算法能够收敛到近似最优解。基于KDD数据集的实验结果表明,该算法能够获得接近线性的训练速率,且泛化性能和支持向量数目与LIBSVM方法的结果接近。 This paper made a deep study on the training problems of SVM on very large data set, proposed a novel block-based incremental algorithm for solving the problem, namely BISVM, which worked like SMO. The new algorithm utilizes the increase and the decrease procedures to learn inputting data blocks one by one so that the rapidly-increased computation costs for large datasets could be avoided. Theoretical analyses show that BISVM converges to the solution of support vector machines. Experimental results on KDD dataset indicate that training time of BISVM is approximate liner to the scale of problem, while receives the comparable generalization performance as that of LIBSVM.
出处 《计算机应用研究》 CSCD 北大核心 2008年第1期98-100,113,共4页 Application Research of Computers
基金 四川省青年软件创新基金资助项目(2005AA0827)
关键词 支持向量机 块增量算法 大规模训练 support vector machines(SVM) block-based incremental algorithm large-scale training
  • 相关文献

参考文献8

  • 1Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2PLATT J C.Fast training of support vector machines using sequential minimal optimization[C]//SCHOLKOPF B,BURGES C,SMOLA A.Advances in kernel methods:support vector machines.Cambridge:MIT Press,1998.
  • 3CAO L J,KEERTHI S S,ONG C J,et al.Parallel sequential minimal optimization for the training of support vector machines[J].IEEE Trans on Neural Network,2006,17(4):1039-1049.
  • 4KEERTHI S S,SHEVADE S K,BHATTACHARYYA C,et al.Im-provements to Platt's SMO algorithm for SVM classifyier design[J].Neural Computation,2001,13(3):637-649.
  • 5LIN C J.Asymptotic convergence of an SMO algorithm without any assumptions[J].IEEE Trans on Neural Networks,2002,13(1):248-250.
  • 6KEERTHI S S,GILBERT E G.Convergence of a generalized SMO algorithm for SVM classifier design[J].Machine Learning,2002,46(1/3):351-360.
  • 7KDD cup 1999 data[EB/OL].(1999).http://kdd.ics.uci.edu/databases/ kddcup99/kddcup99.html UTH.
  • 8TSANG I W,KWOK J T,CHEUNG P M.Core vector machines:fast SVM training on very large data sets[J].Journal of Machine Learning Research,2005,6:363-392.

共引文献173

同被引文献14

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部