期刊文献+

基于相位一致性图像的模块化PCA人脸识别方法 被引量:1

Novel modular PCA method based on phase congruency images for face recognition
下载PDF
导出
摘要 提出了一种新的基于相位一致性的模块化PCA的人脸识别方法。解决了人脸识别受光照影响的问题。首先得到人脸训练样本的相位一致性图像;然后将人脸相位一致性图像划分为更小的子模块,用PCA方法处理这些子模块图像。在姿势、光照以及表情变化的情况下同一个人的局部面部特征是不变的,因此用该方法来处理这些变化。给出了传统的模块化PCA方法与该方法在不同姿势、光照和表情变化条件下的对比实验结果。实验结果表明该方法的人脸识别率较传统模块化PCA方法有了较大提高。 A novel modular PCA algorithm for face recognition based on phase congruency was presented. The accuracy of the modular PCA method and the proposed method were evaluated under the conditions of varying expression, illumination and pose using standard face databases. The results indicate high improvement in the classification performance compared to the conventional modular PCA method.
出处 《计算机应用研究》 CSCD 北大核心 2008年第1期318-320,共3页 Application Research of Computers
关键词 人脸识别 主成分分析 模块化主成分分析 相位一致性 face recognition principal component analysis(PCA) modular PCA phase congruency
  • 相关文献

参考文献12

  • 1CHELLAPPA R,WILSON C L,SIROHEY S.Human and machine recognition of faces:a survey[J].Proc IEEE,1995,83(5):705-740.
  • 2KIRBY M,SIROVICH L.Application of the karhunen-loeve procedure for the characterization of human faces[J].IEEE Trans Pattern Anal MachineIntell,1990,12(1):103-108.
  • 3GRAHAM D B,ALLINSON N M.Characterizing virtual eigen signatures for general purpose face recognition[C]//Proc of Face Recognition:From Theory to Applications,NATO ASI Series F.[S.l.]:Computer and Systems Sciences,1998:446-456.
  • 4MOGHADDAM B,PENTLAND A.Probabilistic visual learning for object representation[J].IEEE Trans Pattern Anal Machine Intell PAMI,1997,19(7):696-710.
  • 5MARTINEZ A M.Recognition of partially occluded and/or imprecisely localized faces using a probabilistic approach[C]//Proc of Computer Vision and Pattern Recognition.2000:712-717.
  • 6MURASE H,KIMURA F,YOSHIMURA M,et al.An improvement of the auto-correlation matrix in pattern matching method and its applications to handprinted 'HIRAGANA'[C]//Proc of Transactions on IECE.1981.
  • 7MURASE H,NAYAR S.Visual learning and recognition of 3-D objects from appearance[J].Int J Computer Vision,1995,14:5-24.
  • 8NAYAR S K,NENE N A,MURASE H.Subspace methods for robot vision[J].IEEE Trans Robot Automat,1996,RA-12(5):750-758.
  • 9WENG J J.Crescepton and SHOSLIF:towards comprehensive visual learning[M]//NAYAR S K,POGGIO T.Early visual learning.Oxford:Oxford University Press,1996:183-214.
  • 10OPPENHEIM A V,LIM J S.The importance of phase in signals[J].IEEE Proceedings,1981,69:529-541.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部