期刊文献+

基于支持向量机的非线性多用户检测 被引量:3

Support vector machine for nonlinear multi-user detection
下载PDF
导出
摘要 基于支持向量机的非线性多用户检测器具有利用较少训练数据检测CDMA通信系统信号、性能稳定的优点。由于通信系统中的多径干扰和信道的非线性,尤其在非高斯噪声的环境下,线性的检测器已经不再适用。本文将支持向量机应用于非线性多用户检测中,从仿真结果来看,基于支持向量机的非线性多用户检测性能接近于最佳检测器且优于线性检测器。 Support Vector Machine (SVM) is proposed as a nonlinear Multi - User Detector(MUD) trom a relatively small training data block to detect CDMA signals. Because of the steady capability, it is used in MUD, then it is improved in the complexity and rate of operation. Because of the multiple access interference and the nonlinearity of channel, the performance of linear detector will be degraded substantially. Especially in the case of non- gaussian noise environment. SVM which is a nonlinear method is proposed to implement the multiuser detector. As the simulation results show, the performance of SVM MUD is very close to the optimal detector and prior to the linear MUD.
出处 《西安邮电学院学报》 2008年第1期82-85,共4页 Journal of Xi'an Institute of Posts and Telecommunications
基金 国家自然科学基金项目(10371106 10471114) 江苏省高校自然科学基金项目(04KJB110097)
关键词 支持向量机 码分多址 非线性多用户检测 support vector machine CDMA Multi- User Detection
  • 相关文献

参考文献19

  • 1R.Prasad,CDMA for Wireless Personal Communications.Norwood,MA:Artech House,1996.
  • 2S.Moshavi,Multiuser Detection for DS-CDMA Communications[J].IEEE Commun,Mag,1996,34 (10):124-136.
  • 3Verdu S.Multiuser Detection[M].Cambridge,U K:Cambridge Univ Press,1998.
  • 4Behnaam Aazhang,et al.Neural Network for Multiuser Detection in CDMA Conmmunications[J].IEEE Trans.On Commun,1992,40(7):1212-1222.
  • 5李春光,廖晓峰,吴中福,虞厥邦.基于径向基函数神经网络的CDMA多用户检测方法[J].信号处理,2000,16(3):206-210. 被引量:8
  • 6Vapnik S.Multiuser Detection[M].New York:Springer-Verlag,1995.
  • 7V.Vapnik,The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995.
  • 8B.Sch(o)lkopf,K.K.Sung,C.J.C.Burges,F.Girosi,P.Niyogi,T.Poggio,and V.Vapnik,"Comparing support vector machines with Gaussian kernels to radial basis function classifiers," IEEE Trans.Signal Processing,vol.45,pp.2758-2765,1997.
  • 9C.J.C.Burges,A tutorial on support vector machines for pattern recognition,Data Mining and Knowledge Discovery,vol.2,no.2,pp.121-167,1998.
  • 10V.Vapnik,The support vector method of function estimation,in Nonlinear Modeling:Advanced Black-Box Techniques,J.A.K.Suykens and J.Vandewalle,Eds.Boston,MA:Kluwer,1998,pp.55-85.

二级参考文献3

  • 1唐普莫,信号处理,1996年,12卷,4期,289页
  • 2胡健栋,码分多址与个人通信,1996年
  • 3Lee S C,Neural Networks,1991年,4卷,207页

共引文献7

同被引文献17

  • 1廖琪梅,董秀珍,付峰.人体乳腺组织电阻抗特性的研究[J].国际生物医学工程杂志,2006,29(4):218-221. 被引量:4
  • 2方辉,王倩.支持向量机的算法研究[J].长春师范学院学报(自然科学版),2007,26(3):90-91. 被引量:13
  • 3Chen Jiarning, Li Lei, Nie Lirlgye. Wavelet image compression by using hybrid kernel SVM [ C ] // Proceeding of ICMLC2008. Kunming: [s. n. ] ,2008:3056 - 3060.
  • 4Cui Jianggui, Li Zhonghai. The Application of Support Vector Machine in Pattem Reoognition[ C] //2007 IEEE International Corrference on Control and Automation. Guangzhou: [ s. n. ] ,2007:3135 - 3138.
  • 5Lin Chunfu, Wang Shengde. Fuzzy support vector machines [J ]. IEEE Transactions on Neural Networks, 2002, 13 (2): 464 - 471.
  • 6Song Qing, Hu Wenjie, Xie Wenfang. Robust support vector machine with bullet hole image classification[J ]. IEEE transactions on systems, man and cyberneticspart C: applications and reviews,2002,32(4) :440 - 448.
  • 7Zhang Xuegong. Using class- center vectors to build support vector machines[ C]//Neural Networks for Signal Processing IX- Proc of the 1999 IEEE Workshop. Wisconsin: IEEE Inc, 1999 : 33 - 37.
  • 8Estrela J,Marques J P, Jossinet J. Classification ofbreast tissue by electrical impedance spectroscopy[J].Med Bio Eng Computing, 2000, 38(1) : 26-30.
  • 9Zheng Chunhong Jiao Licheng Li Yongzhao.Support vector classifier based on principal component analysis[J].Journal of Systems Engineering and Electronics,2008,19(1):184-190. 被引量:1
  • 10王玉震,李雷.基于SVR的图像增强方法[J].计算机技术与发展,2009,19(1):60-62. 被引量:10

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部