期刊文献+

协方差交叉在分布式传感器网络定位中的应用 被引量:2

The application of covariance intersection in localization of DSN
下载PDF
导出
摘要 节点定位的精确性在分布式传感器网络的许多应用中都起着至关重要的作用。目前较受关注的定位方法主要包括TDOA和RSS。这两种方法是非独立的,而且定位精度易受噪声影响。如果采用传统的卡尔曼滤波方式对数据加以融合,可以降低估计误差。但因假定数据间的协方差为零,使结果并非保守可靠。本文将协方差交叉算法应用于此类数据融合问题,分别在泊松分布和均匀分布情况下,对分布式传感器网络的节点定位过程加以仿真。结果显示,协方差交叉算法更加可靠,并且提高了定位精度,非常适用于分布式传感器网络。 The accuracy of node localization is crucial for many applications of Distributed Sen,or Network (DSN). TDOA and RSS are two location technologies that are paid more attention to nowadays. But they are not independent, and are suject to noise affection. If we apply the traditional Kalman Filter method to fuse them, the estimation error could be decreased, but the result is not trustable, for Kalman Filter assumes the cross eovariance to be zero. This paper adopts Covariance Intersection (CI) algorithm into this type of data fusion, and simulates DSN nodes under Poisson and Uniform distribution separately. The results show that CI method is more reliable and can improve the location accuracy. CI algorithm is quite suitable for DSN applications.
出处 《西安邮电学院学报》 2008年第1期95-98,共4页 Journal of Xi'an Institute of Posts and Telecommunications
基金 陕西省自然科学基金(2004F12) 西安邮电学院自立项目(109-0405)
关键词 分布式传感器网络 数据融合 协方差交叉 到达时间差 接收信号强度 Distributed Sensor Network (DSN) data fusion Covariance Intersection (CI) TDOA RSS
  • 相关文献

参考文献6

  • 1曾鹏,于海斌,梁英,尚志军,王忠锋.分布式无线传感器网络体系结构及应用支撑技术研究[J].信息与控制,2004,33(3):307-313. 被引量:48
  • 2Fredrik Gustafsson,Fredrik Gunnarsson.Pcsitioning using time-difference of arrival measurements[J].IEEE International Conference on Acoustics,Speech,and Signal Processing,Proceedings 2003.(ICASSP'03),Volume:6,April 2003:6-10.
  • 3Ren C.Luo,Ogst Chen,L.C.Tu.Nodes Localization through Data Fusion in Sensor Network[J].Proceedings of the 19th International Conference on Advanced Information Networkingand Applications (AINA'05),Volume:1,March 2005:1-6.
  • 4Filippo Mondinelli,Zsolt M.Kovacs-Vajna.Self-localizing sensor network architectures[J].IEEE Transactions on Instrumentation and Measurement,Volume:53,Issue:2,April 2004:277-283.
  • 5Lingji Chen,Pablo O.Arambel,Ramman K.Mehra.Estimation under unknown correlation:covariance intersection revisited[J].IEEE Transactions on Automatic Control,2002,47(11):1879-1882.
  • 6Simon J.Julier,Jeffrey K.Uhlmann.A non-divergent estimation algorithm in the presence of unknown correlations[J].American Control Conference,1997.Proceedings of the 1997.Volume:4,Jun 1997:2369-2373.

二级参考文献25

  • 1Shih E, Cho S H, Jckes N, et al. Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks [ A]. Proceedings of the 7th Annual International Conference on Mobile Computing and Networks ( MobiCOM ' 01 ) [ C]. Rome:AC
  • 2USC/ISl. SCADDS: Scalable Coordination Architectures for Deeply Distributed Systems [ EB/OL]. http://www, isi. edu/scadds,2002 - 10 - 2.
  • 3Kahn J, Katz R, Pister K. Next century challenges: mobile networking for smart dust [ A]. Proceedings of the 5th Annual International Conference on Mobile Computing and Networks ( MobiCOM '99) [C]. Washington:ACM Press,1999. 271 ~278.
  • 4Akyildiz I, Su W, Sanakarasubramaniam Y, et al. Wireless sensor networks: a survey [ J ]. Computer Networks, 2002,38 (4):393 - 422.
  • 5Estrin D, Govindan R, Heidemann J, et al. Next century challenges: sealable coordination in sensor network [ A]. Proceedings of the 5th Annual International Conference on Mobile Computing and Networks ( MobiCOM ' 99) [ C ]. Washington: ACM Press,1999. 263
  • 6Mills D. Internet time synchronization: the network time protoool [ J ]. IEEE Transactions on Computers, 1991, 39 (10): 1482 -1493.
  • 7Elson J, Girod L, Estrin D. Fine-grained network time synchronization using reference broadcasts [ A]. Proceedings of the Fifth Symposium on Operating Systems Designed Implementation ( OSDI'02) [C]. Boston: ACM Press, 2002,5. 147~136.
  • 8Elson J, Estrin D. Time synchronization for wireless sensor networks [ A ]. Proceedings of the 2001 International Parallel and Distributed Processing Symposium ( IPDPS ' 01 ) [ C]. San Francisco: IEEE Computer Society, 2001.23 ~27.
  • 9Hill J, Culler D. A Wireless Embedded Sensor Architecture for System-level Optimization [ R]. USA: Berkeley, 2001.
  • 10Elson J, Romer K. Wireless Sensor Networks: a New Regime for Time Synchronization [ R]. USA:UCLA, 2002.

共引文献47

同被引文献11

  • 1韩崇昭,朱洪艳,段战胜,等.多源信息融合[M].2版.北京:清华大学出版社,2010:394.
  • 2JULIER S J, UHLMANN J K. A non-divergent estimation algorithm in the presence of unknown correlations [ J ]. Proceedings of the American Control Conference, Albuquerque, NM, 1997, 4:2369-2373.
  • 3JULIER S J, UHLMANN J K. Generalized and split covafiance intersection and addition [ R ]. Technial Disclosure Report, Naval Research Laboratory, 1998.
  • 4Choi Byoung-Suk,Lee Joon-Woo,Lee Ju-Jang,et al.A hierarchical algorithm for indoor mobile robots localization using RFID sensor fusion. IEEE Transactions on Industrial Electronics . 2011
  • 5Luo Ren C,,Chen Ogst.Indoor human dynamic localization and tracking based on sensory data fusion techniques. The2009IEEE/RSJ Int Conf on Intelligent Robots and Systems . 2009
  • 6González J,Blanco J L,Galindo C,et al.Combination of UWB and GPS for indoor-outdoor vehicle localization. IEEE Int Symp on Intelligent Signal Processing . 2007
  • 7施岩龙,郝欣,马艳琴.一种提高组网雷达目标定位精度的算法[J].中国电子科学研究院学报,2009,4(5):523-527. 被引量:2
  • 8林以明,罗海勇,李锦涛,赵方.基于动态Radio Map的粒子滤波室内无线定位算法[J].计算机研究与发展,2011,48(1):139-146. 被引量:20
  • 9孙洪泉,窦闻,易文斌.遥感图像融合的研究现状、困境及发展趋势探讨[J].遥感信息,2011,33(1):104-108. 被引量:7
  • 10魏振华,江雪峰.一种基于SVM的加权似然比融合算法[J].控制与决策,2011,26(5):777-780. 被引量:3

引证文献2

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部