期刊文献+

一种新的回归型约简多分辨率相关向量机 被引量:5

A novel regression algorithm of reduced multi-resolution relevance vector machine
下载PDF
导出
摘要 提出一种新的稀疏贝叶斯回归算法.基于相关向量机,首先通过尺度核和小波核构造完备基以提高预测精度;然后利用保局投影对输入矩阵的列进行主成分提取以减少训练时间,从而形成算法的初步模型.为进一步减小较大规模训练数据集的回归时间压力,算法对训练数据集的分层采样建立了初步模型,进而产生实际较小规模的训练数据集.实验结果表明,算法在预测精度和鲁棒性上优于传统支持向量机和相关向量机,且其训练时间较相关向量机少. To further improve the prediction accuracy and running efficiency, a novel sparse Bayesian algorithm for regression is proposed. Based on relevance vector machine, a set of complete basises are constructed by combing scaling and wavelet kernels to increase the prediction accuracy, and then the principal components of input matrix columns are extracted by using locality preserving projections to reduce the training time, which forms a primary model. To further reduce the time pressure for a larger training data set, the algorithm creates a smaller training data set via the primary model based on a stratified sample. Experimental results of artificial and real data show that the proposed algorithm is superior to traditional support vector machine and relevance vector machine in both prediction accuracy and robustness and has less training time than relevance vector machine.
出处 《控制与决策》 EI CSCD 北大核心 2008年第1期65-69,共5页 Control and Decision
基金 国家部委预研基金项目(413160501) 西安电子科技大学研究生创新基金课题(05008)
关键词 相关向量机回归 尺度核函数 小波核函数 保局投影 数据采样 Relevance vector machine for regression Scaling kernel Wavelet kernel Locality preserving projections Data sampling
  • 相关文献

参考文献15

  • 1Trevor Hastie,Robert Tibshirani,Jerome Friedman.The elements of statistical learning:Data mining,inference and prediction[M].New York:SpringerVerlag,2001.
  • 2Michael E Tipping.Sparse Bayesian learning and the relevance vector machine[J].J of Machine Learning Research,2001,1(3):211-244.
  • 3张旭东,陈锋,高隽,方廷健.稀疏贝叶斯及其在时间序列预测中的应用[J].控制与决策,2006,21(5):585-588. 被引量:7
  • 4Quinonero-Candela Joaquin,Hansen Lars Kai.Time series prediction based on the relevance vector machine with adaptive kernels[C].IEEE Int Conf on Acoustics,Speech and Signal Processing.Piscataway:IEEE Press,2002:985-988.
  • 5刘遵雄,张德运,孙钦东,徐征.基于相关向量机的电力负荷中期预测[J].西安交通大学学报,2004,38(10):1005-1008. 被引量:22
  • 6He Xiao-fei.Locality preserving projections[D].Chicago:The University of Chicago,2005.
  • 7张莉,周伟达,焦李成.尺度核函数支撑矢量机[J].电子学报,2002,30(4):527-529. 被引量:18
  • 8胡丹,肖建,车畅.尺度核支持向量机及在动态系统辨识中的应用[J].西南交通大学学报,2006,41(4):460-465. 被引量:4
  • 9Zhang Li,Zhou Wei-da,Jiao Li-cheng.Wavelet support vector machine[J].IEEE Trans on Systems,Man and Cybernetics,2004,34(1):34-39.
  • 10Vincent Guigue,Alain Rakotomamonjy,Stephane Canu.Kernel basis pursuit[C].ECML.Berlin:Springer-Verlag,2005:146-157.

二级参考文献40

  • 1韩敏,王晨,席剑辉.基于改进RBF神经网络的非线性时间序列预测[J].仪器仪表学报,2003,24(z1):574-575. 被引量:9
  • 2张葛祥,荣海娜,金炜东.支持向量机在雷达辐射源信号识别中的应用[J].西南交通大学学报,2006,41(1):25-30. 被引量:31
  • 3赵松年 熊小芸.子波变换与子波分析[M].北京:电子工业出版社,1997..
  • 4张贤达 保铮.非平衡信号分析与处理[M].北京:国防工业出版社,1998.12-280.
  • 5SCHOLK(O)PF B,BURGES C,VAPNIK V.Extracting support data for a given task[C] // First International Conference on Knowledge Discovery & Data Mining.[s.l.]:AAAI Press,1995:10-76.
  • 6刘贵忠,双亮.小波分析及其应用[M].西安:西安电子科技大学出版社,1993:10-99.
  • 7VAPINK V,GOLOWICH S,SMOLA A,Support vector method for function approximation,regression estimation,and signal processing[J].Neural Information Processing Systems,1997,9:281-287.
  • 8GROSSMANN A,MORLET J.Decomposition of hardy function into square integrable wavelets of constant shape[J].SIAM J.Math.Anal.,1984,15:723-726.
  • 9ONDELETTES M Y.Functions Splines et Analyses Graduees[R].Italy:Lectures Given at the University of Torino,1986.
  • 10韩家炜 范明 等.数据挖掘概念与技术[M].北京:机械工业出版社,2001,8..

共引文献55

同被引文献26

  • 1姚林,阳建宏,徐金梧,王植.基于偏最小二乘回归模型的带钢热镀锌质量监控方法[J].北京科技大学学报,2007,29(6):627-631. 被引量:13
  • 2Tipping M E. Sparse Bayesian learning and the relevance vector machine. J Math Learn Res, 2001, 3:211.
  • 3Scholkopf B, Alexander J S. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. London: The MIT Press, 2001.
  • 4Vladirnir N V. The Nature of Statistical Learning Theory. New York: Springer, 1995.
  • 5Kropotov D, Ptashko N, Vasiliev O, et al. On kernel selection in relevance vector machines using stability principle//The 18th In- ternational Conference on Pattern Recognition, ( ICPR ' 06 ), 2006.
  • 6Nikolaev N, Tino P. Sequential relevance vector machine learning from time series//Proceedings of International Joint Conference on Neural Networks. Montreal, 2005.
  • 7Gustavo C V, Manel M R, Jose R A, et al. Nonlinear system identification with composite relevance vector machines. 1EEE Signal Process Lett, 2007, 14(4) :279.
  • 8Chen S, Gunn S R, Harris C J. The relevance vector machine technique for channel equalization application. IEEE Trans Neural Networks, 2001, 12(6): 1529.
  • 9Zhang L, Zhou W D, Jiao L C . Wavelet support vector machine. IEEE Trans Syst Man Cybern Part B, 2004, 34(1) : 34.
  • 10Vapnik V N.The Nature of Statistical Learning Theory[M].2nd ed.New York,USA:Springer-Verlag,1995.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部