期刊文献+

离散广义区间动力系统的稳定性 被引量:1

Stability of discrete singular interval systems
下载PDF
导出
摘要 利用范数理论,研究离散广义区间动力系统的稳定性问题,给出其区间动力系统的正则、因果且稳定的充分条件.在此基础上,进一步考虑该系统的区间极点集的配置问题,给出了使离散广义区间动力系统的极点落在预先给定园盘内的判定定理.数值算例表明了该方法的可行性. By using the norm theory, the problem of the stability of discrete singular interval systems is studied. The sufficient condition for that the discrete singular interval systems are regular, impulse and stable is presented. Furthermore, the developed criteria are applied to solve interval pole-assignment problems of discrete singular interval systems, and a sufficient condition is proposed to guarantee robust pole locating within a specified circular region for the discrete singular interval systems. An numeral example shows the feasibility of the method.
作者 梁家荣
出处 《控制与决策》 EI CSCD 北大核心 2008年第1期114-116,120,共4页 Control and Decision
基金 国家自然科学基金项目(60564001) 教育部新世纪优秀人才支持计划专项基金项目(NCET-06-0756) 广西省自然科学基金项目(桂科回0448001) 广西"十百千人才工程"专项基金项目(2003207)
关键词 离散广义系统 稳定性 区间矩阵 Discrete singular systems Stability Interval matrices
  • 相关文献

参考文献9

  • 1Jiang C L.Sufficient condition for the asymptotic stability of interval matrices[J].Int J of Control,1987,46(5):1803-1810.
  • 2SoH Y C,Evans R J.Stability analysis of interval matrices-continuous and discrete systems[J].Int J of Control,1988,47(1):25-32.
  • 3ManSour M.Simplified sufficient conditions for the asymptotic stability of interval matrices[J].Int J of Control,1989,50(1):443-444.
  • 4Wang Q G.Necessary and sufficient conditions for stability of a matrix polytope with normal vertex matrices[J].Automatic,1991,27(5):887-888.
  • 5何希勤,张大庆,张庆灵.广义区间动力系统的能控性[J].自动化学报,2004,30(5):763-771. 被引量:5
  • 6张大庆,何希勤,张庆灵.广义区间动力系统稳定的充分条件[J].东北大学学报(自然科学版),2003,24(5):412-415. 被引量:3
  • 7徐胜元,杨成梧.广义区间动力系统的稳定性分析[J].控制理论与应用,2000,17(2):249-250. 被引量:8
  • 8Dai L.Singular control systems[M].New York:Springer-Veglag,1989.
  • 9Bender D J,Laub A J.The linear-quadratic optimal regulator for descriptor systems:Discrete-time case[J].Automatica,1987,23(1):72-85.

二级参考文献28

  • 1曾志平.广告在科技期刊市场竞争中的作用[J].科技与出版,2005(4):64-65. 被引量:14
  • 2Wang K,Anthony N M, Liu D R. Necessary and sufficient conditions for the hurwitz and sehur stability of interval matriees[J]. IEEE Trans on Automatic Control, 1994,39(6) : 1251 - 1255.
  • 3Lin C, Lain J, Wang J, et al. Analysis on robust stability for interval descriptor systems[J]. Systems & Control Letters,2001,42(4) :267 - 278.
  • 4Polls M P. An overview of recent results on the parametric approach to robust stability[A]. Proc of the 28th CDC[C].Tampa,Florida: IEEE, 1989.23 - 29.
  • 5Markov S. An iteradve method for algebraic solution tointerval equations[J ]. Applied Numerical Mathematics,1999,30 ( 2 - 3) : 225 - 239.
  • 6Moore R E. Methods and applications of interval analysis[M]. Philaddphia: Siam, 1979.1 - 50.
  • 7Wu F, Shi Z, Zhou Z. Robust stabilization of linear timevarying interval systems [ A ]. Proc of the 3th World Congress on Intelligent Control and Automation [C]. Hefei:IEEE, 2000. 3415 - 3418.
  • 8Rohn J. Stability of interval matrices:the real eigenvalue case[J ]. IEEE Trans on Automatic Control, 1992, 37 (10) :1604- 1605.
  • 9Chen J. Sufficient conditions on stability of interval matrices:connections and new results[J]. IEEE Trans on Automatic Control, 1992,37(4) :541 - 544.
  • 10Sezer M E,Siljab D D. On stability of interval matrices[J].IEEE Trans on Automatic Control, 1994, 39 ( 2 ) : 368 -371.

共引文献11

同被引文献6

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部