期刊文献+

固体氧化物燃料电池的数学模型及自适应神经模糊辨识模型的研究 被引量:11

Modeling of Solid Oxide Fuel Cell Based on Mathematical Theory and Adaptive Neural Fuzzy Inference System Identification
下载PDF
导出
摘要 固体氧化物燃料电池(solid oxide fuel cell,SOFC)是21世纪最有生命力的发电技术之一。文章从SOFC实际应用的角度出发,应用改进的自适应神经模糊推理系统(adaptive neural fuzzy inference system,ANFIS)对SOFC建立了负载稳定和负载变化2种情况下的电特性模型。由于数据来源不足,首先根据SOFC的工作原理,运用电化学、流体动力学等学科理论,建立SOFC的数学模型,基于该数学模型获取ANFIS辨识模型的训练和预测数据。仿真结果显示了改进的ANFIS技术对SOFC系统的建模和控制具有一定的实用价值。 The solid oxide fuel most promising power generation cell (SOFC) is one of the technologies in the 21st century. Starting from the practical application of SOFC and by use of improved adaptive neural fuzzy inference system (ANFIS), the authors establish electric characteristic model for SOFC stack under the conditions of stable loads and variable loads. Due to insufficient source of the data, firstly according to the working principle of SOFC, by using the theory in electrochemistry and hydrodynamics, a mathematical model of SOFC is built; then on this basis the training and forecasting data for identification model of ANFIS is obtained, Simulation results show that the improved ANFIS technique is available for the modeling and control of SOFC.
出处 《电网技术》 EI CSCD 北大核心 2008年第1期9-14,共6页 Power System Technology
基金 国家高技术研究发展计划项目(863项目)(2006AA05Z148)。~~
关键词 固体氧化物燃料电池 数学模型 自适应神经模糊 推理系统 辨识模型 solid oxide fuel cells adaptive neural fuzzy inference system mathematical model identification model
  • 相关文献

参考文献21

  • 1Bove R,Lunghi P,Sammes N M.SOFC mathematic model for systems simulations-Part 2:definition of an analytical model[J].International Journal of Hydrogen Energy,2005,30 (2):189-200.
  • 2Nehter P.Two-dimensional transient model of a cascaded micro-tubular solid oxide fuel cell fed with methane[J].Journal of Power Sources,2006,157(1):325-334.
  • 3Recknagle K P,Williford R E,Chick L A,et al.Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks[J].Journal of Power Sources,2003,113(1):109-114.
  • 4Arriagada J,Olausson P,Selimovic A.Artificial neural network simulator for SOFC performance prediction[J].Journal of Power Sources,2002,112(1):54-60.
  • 5Huo Haibo,Zhu Xinjian,Cao Guangyi.Nonlinear modeling of a SOFC stack based on a least squares support vector machine[J].Journal of Power Sources,2006,162(2):1220-1225.
  • 6Wu Xiaojuan,Zhu Xinjian,Cao Guangyi,et al.Modeling a SOFC stack based on GA-RBF neural networks identification[J].Journal of Power Sources,2007,167(1):145-150.
  • 7杜新伟,刘涤尘,李媛,熊元新,王晓君.自适应神经模糊推理系统在电力故障重现中的应用[J].电网技术,2006,30(6):82-87. 被引量:9
  • 8雷绍兰,孙才新,周湶,张晓星,程其云.基于径向基神经网络和自适应神经模糊系统的电力短期负荷预测方法[J].中国电机工程学报,2005,25(22):78-82. 被引量:71
  • 9Padullés J,Ault G W,McDonald J R.An integrated SOFC plant dynamic model for power system simulation[J].Journal of Power Sources,2000,86(1-2):495-500.
  • 10EG&G Technical Services Inc.,and Science Applications International Corporation.Fuel cell handbook(sixth edition)[M].Morgantown:U.S.Department of Energy,Office of Fossil Energy,National Energy Technology Laboratory,2002.

二级参考文献134

共引文献354

同被引文献113

引证文献11

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部