期刊文献+

利用反馈方法控制Lü系统中的混沌

Feedback Control of Lü Chaotic Dynamical System
下载PDF
导出
摘要 利用经典反馈法实现了Lü系统的混沌控制,并基于Lyapunov直接法和Routh-Hurwitz判据讨论受控Lü系统的混沌轨道达到渐进稳定时的条件,并给出理论上的证明。数值模拟进一步验证了经典反馈控制方法均可成功将Lü系统混沌运动轨道镇定到不稳定平衡点或不稳定周期轨道,即极限环上。 This paper discusses classical feedback method is used to control chaos in Lü dynamical system. Based on the Lyapunov direct method and Routh-Hurwitz criteria, the conditions of the asymptotic stability of the steady states of the controlled Lü system are discussed, and they are also proved theoretically. Numerical simulations show that the method can suppress chaos to unstable equilibrium points or unstable periodic orbits (limit cycles) successfully.
出处 《计算机与现代化》 2008年第1期11-14,共4页 Computer and Modernization
关键词 Lü系统 反馈法 混沌控制 不稳定平衡点 极限环 Lü chaotic dynamical system feedback method, chaos control unstable equilibrium point limit cycles
  • 相关文献

参考文献6

  • 1Ott E,Grebogi C,Yorke J A.Controlling Chaos[J].Phys.Rev.Lett.1990,64(11):1196-1199.
  • 2Chen G,Dong X.From Chaos to Order:Methodologies,Perspectives and Applications[M].Singapore:World Scientific,1998.
  • 3Lorenz E N.Deterministic nonperiodic flow[J].Journal of Atmospheres Science,1963,20:130-141.
  • 4Chen G,Ueta T.Yet another chaotic attroctor[J].International Journal of Bifurcation and Chaos,1999,9(7):1465-1466.
  • 5Lü J,Chen G.A new chaotic attractor coined[J].International Journal of Bifurcation and Chaos,2002,12(3):659-661.
  • 6王兴元.旋转对称的广义Lorenz奇怪吸引子[J].计算物理,2003,20(5):458-462. 被引量:10

二级参考文献9

  • 1WANG XingyuanSchool of Electronic and Information Engineering, Dalian University of Technology, Dalian 116024, China.Relation of chaos activity characteristics of the cardiac system with the evolution of species[J].Chinese Science Bulletin,2002,47(24):2042-2048. 被引量:21
  • 2格莱克 张淑誉等(译).混沌:开创新科学[M].上海:上海译文出版社,1990.270-344.
  • 3格莱克著 张淑誉译.混沌:开创新科学[M].上海:上海译文出版社,1990.9-86.
  • 4Lorenz E N. Deterministic nonperiodic flow [ J]. J Atmos Sci, 1963,20: 130 - 141.
  • 5Benettin G, Galgani L, Strelcyn J M. Kolmogorov entropy and numerical experiments [J]. Plays Rev A, 1976,14:2338- 2345.
  • 6Grassberger P, Procaccia I. Characterization of strange attractors [J] .Phys Rev Lett, 1983,50:346- 355.
  • 7Packard N H, Crutchfield P, Farmer J D, Shaw R S. Geometry from a time series [J]. Plays Bey Lett, 1980,45:712- 716.
  • 8Brandstater A, Swinney H L. Strange attractors in weakly turbulent Couette-Taylor flow [J]. Phys Rev A, 1987,35:2207 - 2219.
  • 9王兴元,朱伟勇.二维 Logistic 映象的吸引子演化[J].东北大学学报(自然科学版),1997,18(4):417-420. 被引量:8

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部