期刊文献+

谱元方法求解波动方程及影响其数值精度的相关因素 被引量:1

Implicit Spectral Element Method for Wave Equation and Some Factors Influencing Numerical Accuracy
下载PDF
导出
摘要 为探讨波动方程的高精度数值模拟,采用Chebyshev谱元方法结合隐式Newmark时间积分方法求解波动方程.求解一个具体算例验证了数值方法的可行性,讨论了时间步长、Newmark因子以及计算区域的网格剖分方式对数值精度的影响.结果表明:和差分法相比,谱元方法求解波动方程具有所用网格节点少,数值精度高的特点;数值误差随时间步长减小而减小;在满足稳定性要求的前提下,数值误差随着Newmark因子的减小而减小;当总网格节点数相同时,不同的网格剖分方式所得数值误差不同.所述方法和结论可用于模拟声波在空气中的传播. To investigate the numerical scheme with high order of accuracy for the simulation of wave equations, Chebyshev spectral element method combined with implicit Newmark time integral method is adopted for simulating wave equations. Then some factors affecting the numerical accuracy are discussed in detail, such as time step h, Newmark factor and the subdivision style for computational domain. The conclusions indicate that the spectral element method has higher order numerical accuracy than difference method for simulation of wave equations, small time step induces less numerical error, smaller Newmark factor induces smaller numerical error, and different mesh style induces different numerical error while the general grid member gets equal to each other. The proposed method enables to simulate acoustic wave propagation in air.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第1期56-59,77,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50676071)
关键词 波动方程 谱元方法 时间积分方法 气动声学 wave equation spectral element method time integral method aeroacoustics
  • 相关文献

参考文献5

  • 1PETERA A T.A spectral element method for fluid dynamics:laminar flow in a channel expansion[J].Journal of Computational Physics,1984,54(3):468-488.
  • 2陈雪江,秦国良,徐忠.谱元法和高阶时间分裂法求解方腔顶盖驱动流[J].计算力学学报,2002,19(3):281-285. 被引量:17
  • 3居鸿宾,沈孟育.计算气动声学的问题、方法与进展[J].力学与实践,1995,17(5):1-10. 被引量:15
  • 4TAM C K W,WEBB J C.Dispersion-relation-preserving finite difference schemes for computational acoustics[J].Journal of Computational Physics,1993,107(2):262-281.
  • 5GEZA S.An iterative time-stepping method for solving first-order time dependent problems and its application to the wave equation[J].Journal of Computational Acoustics,2000,8(1):241-255.

二级参考文献2

共引文献30

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部