期刊文献+

喷嘴位置对喷射器的性能影响的研究 被引量:13

Study the Influence of Nozzle Position on Ejector Performance
下载PDF
导出
摘要 喷射器内部的流动非常复杂,其流动现象很难通过实验观察,并且喷射器的加工精度要求非常高,这些对于喷射器的设计理论发展是个很大的障碍。本文选用k-ε模型,运用CFD技术对喷射器进行模拟,主要研究不同的喷嘴位置对喷射器的影响。选择喷嘴出口距离混合室入口距离分别为0mm、3mm、5mm、7mm、9mm和11mm时,发现在7mm的时候能够达到一个最大的喷射系数,当距离大于7mm时,会造成工作蒸汽的回流,而使得喷射系数降低。当小于7mm时,虽然喷嘴出口的压力变化不会太大,但是工作蒸汽进入混合室前没有足够的距离来引射蒸汽,喷射系数还是比较低。 It is quite difficult to learn the inside flow of ejector because of its comply'flow, furthermore, high manufacraring precision of ejector is also barricade for the ejector theory improvement. CFD mdthod is used in this paper with k -ε model, to solve the influence of nozzle position on ejector. The distance of nozzle out,to the mixing chamber inlet is chosen as 0mm, 3mm, 5mm, 7mm, 9mm and 11mm, a maximum ejector entrairnment ration is found when the distance is 7mm.When the distance is more then 7mm, circumfluence will appear, so the entrainment ratio will decrease rapidly.When the distance is less then 7mm, although the pressure changing out of nozzle is small, but the distance is too short for the working fluid to entrain secondary flow, so the entrainment ration is still low.
出处 《制冷》 2007年第4期16-19,共4页 Refrigeration
基金 上海市重点学科建设项目(T0503)
关键词 喷射器 k-ε模型 CFD Ejector, k-ernodel,CFD
  • 相关文献

参考文献5

  • 1Keenan H,Neumann EP, Lustwerk F.An investigation of ejector design by analysis and experiment.J.Appl.Mech., Trans.ASME 1950;72:299- 309.
  • 2Bartosiewicz, Y., Aidoun, Z., Desevaux, P., and Mercadier, Y., 2003. CFD - experiments integration in the evaluation of six turbulence models for supersonic modeling. Conference Proc., Integrating CFD and Experiments, Glasgow, UK.
  • 3Bartosiewicz, Y., Mercadier, Y., Proulx, P., 2002. Numerical investigations on dynamics and heat transfer in a turbulent underexpanded jet. AIAA J.40(11), 2257 - 2265.
  • 4E. Rusly, Lu Aye, W. W. S. Charters, A. Ooi, CFD analysis of ejector in a combined ejector cooling system, International Journal of Refrigeration, 2005,28:1092 - 1101.
  • 5徐海涛,桑芝富,顾斌,柴宁,徐卫东.蒸汽喷射真空泵性能的CFD模拟研究[J].高校化学工程学报,2005,19(1):22-29. 被引量:26

二级参考文献11

  • 1Dutton J C, Mikkelsen C D,Addy A L. A theoretical and experimental investigation of the constant area, supersonic-supersonic ejector [J]. AIAA Journal, 1982, 20(10): 1392-1400.
  • 2Dutton J C, Carroll B F. Optimal supersonic ejector designs [J]. ASME Journal of Fluids Engineering. 1986, 108: 414-420.
  • 3Rogdakis E D, Alexis G. Investigation of ejector design at optimum operating condition [J]. Energy Conversion and Management, 2000, 41: 1841-1849
  • 4Beithou N, Aybar H S. High pressure steam-driven jet pump-part Ⅰ: Mathematical modeling [J]. ASME Journal of Engineering for Gas Turbines and Power, 2001, 123: 693-700.
  • 5Beithou N, Aybar H S. High pressure steam-driven jet pump-part Ⅱ: Parametric analysis [J]. ASME Journal of Engineering for Gas Turbines and Power, 2001, 123: 701-706.
  • 6Sun D W, Eames I W. Recent developments in the design theories and application of ejectors-a review [J]. Journal of the Institute of Energy, 1995, 68: 65-79.
  • 7Keenan J H, Neumann E P. A simple air ejector [J]. ASME Journal of Applied Mechanics, 1942, 64: 75-81.
  • 8Keenan J H, Neumann E P, Lustwerk F. An investigation of ejector design by analysis and experiment [J]. ASME Journal of Applied Mechanics, 1950, 72: 299-309.
  • 9Elrod H G. The theory of ejector [J]. ASME Journal of Applied Mechanics, 1945, 67: A170-174.
  • 10Fabri J, Paulon J. Theory and experiments on supersonic air-to-air ejectors [R]. NACA TM-1410, 1958.

共引文献25

同被引文献119

引证文献13

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部