期刊文献+

以广义回归神经网络预测共同基金报酬 被引量:3

Forecast for mutual fund returns with gerenal regression neural network
下载PDF
导出
摘要 鉴于近年来许多相关文献成功地运用广义回归神经网络进行财经方面的预测,以及国内共同基金净值之预测与报酬率评估。通过搜集国内基金资料,以灰关联分析法进行各基金投资绩效分析,挑选投资绩效良好的共同基金作为投资标的;再以广义回归神经网络建立预测模型,与灰预测模型、多元回归模型进行预测能力及报酬率的比较分析。5种预测绩效评价指标、5组数据交互验证散布图及报酬率分析表明:广义回归神经网络在预测能力及预测报酬率上均有很好的表现。 In recent years, there are many relevant documents that are successfully in general regression regression eval ne ne ural ural the analysizes network for the financial network for the prediction return of the investment. its investment performance sector forecasts. of the net value of The author picks with grey relation This paper adoptes the general the domestic mutual fund and for out a lot of fund information at al analysis, and select some good investment performances of mutual funds as investment targets. Through general regression neural network model, he sets up the prediction model and with grey prediction and multiple regression model, he conducts the comparative analysis on the accuracy of the prediction and the return rate. It is found that it is better to predict the return rate with general regression neural network than with grey prediction and multiple regression model. On the basis of the evaluation of the 5 indexes of the performance management, and 5 group interactive data validation map, the gereral regression neural network can perform well in prediction and the prediction of return rates.
作者 潘文超
出处 《长安大学学报(社会科学版)》 2007年第4期55-58,共4页 Journal of Chang'an University(Social Science Edition)
关键词 灰关联分析 灰预测 广义回归神经网络 多元回归模型 遗传算法 grey relational analysis grey prediction general regression neural network multiple regession genetic algorithm
  • 相关文献

参考文献9

  • 1李沃墙.共同基金的绩效评估及净值预测-遗传算法的运用[J].台湾经济金融月刊,1997,33(12):45-62.
  • 2余尚武,许意铃.共同基金净值之预测--灰色理论、类神经网络及适应性类神经模糊推论系统之应用[J].中华管理评论,2005,8(3):1-33.
  • 3[3]Bowden G J,Nixon J B,Dandy G C,et al.Forecasting chlorine residuals in a water distribution system using a general regression neural network[J].Mathematical and Computer Modelling,2006,44(5/6):469-484.
  • 4[4]Jeyamkondan S,Jayas D S,Holley R A.Microbial growth modelling with artificial neural networks[J].International Journal of Food Microbiology,2004,64 (3):343-354.
  • 5[5]杜壮,陈勇雄.智能型服务复原诊断系统--以快餐业为例[M].台北:儒林书局,2001.
  • 6[6]Specht D F.Probabilistic neural networks and the polynomial adaline as complementary techniques for classification[J].IEEE Trans on Neural Networks,1990,1(1):111-121.
  • 7[7]叶怡成.应用类神经网络[M].台北:儒林书局,1998.
  • 8[8]Specht D F.A general regression neural network[J].IEEE Tras Neural Networks,1991,2(6):568-576.
  • 9[9]DENG Ju-long.The control problems of grey system[J].System & Control Letters,1982,3(5):288-294.

同被引文献51

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部